Please note: this site relies heavily on the use of javascript. Without a javascript-enabled browser, this site will not function correctly. Please enable javascript and reload the page, or switch to a different browser.
99  structures 154  species 1  interaction 855  sequences 13  architectures

Family: PDGF (PF00341)

Summary: PDGF/VEGF domain

Pfam includes annotations and additional family information from a range of different sources. These sources can be accessed via the tabs below.

This is the Wikipedia entry entitled "Platelet-derived growth factor". More...

Platelet-derived growth factor Edit Wikipedia article

Platelet-derived growth factor (PDGF)
Symbol PDGF
Pfam PF00341
InterPro IPR000072
SCOP 1pdg

In molecular biology, platelet-derived growth factor (PDGF) is one of the numerous growth factors, or proteins that regulate cell growth and division. In particular, it plays a significant role in blood vessel formation (angiogenesis), the growth of blood vessels from already-existing blood vessel tissue. Uncontrolled angiogenesis is a characteristic of cancer. In chemical terms, platelet-derived growth factor is a dimeric glycoprotein composed of two A (-AA) or two B (-BB) chains or a combination of the two (-AB).

PDGF[1][2] is a potent mitogen for cells of mesenchymal origin, including smooth muscle cells and glial cells. In both mouse and human, the PDGF signalling network consists of four ligands, PDGFA-D, and two receptors, PDGFRalpha and PDGFRbeta. All PDGFs function as secreted, disulphide-linked homodimers, but only PDGFA and B can form functional heterodimers.

Though it is synthesized[3] stored and released by platelets upon activation, it is produced by a plethora of cells including smooth muscle cells, activated macrophages, and endothelial cells[4]


There are five different isoforms of PDGF that activate cellular response through two different receptors. Known ligands include A (PDGFA), B (PDGFB), C (PDGFC), and D (PDGFD), and an AB heterodimer and receptors alpha (PDGFRA) and beta (PDGFRB). PDGF has few other members of the family, for example VEGF sub-family.


The receptor for PDGF, PDGFR is classified as a receptor tyrosine kinase (RTK), a type of cell surface receptor. Two types of PDGFRs have been identified: alpha-type and beta-type PDGFRs.[5] The alpha type binds to PDGF-AA, PDGF-BB and PDGF-AB, whereas the beta type PDGFR binds with high affinity to PDGF-BB and PDGF-AB.[6] PDGF binds to PDGFRs ligand binding pocket located within the second and third immunoglobulin domains.[7] Upon activation by PDGF, these receptors dimerise, and are "switched on" by auto-phosphorylation of several sites on their cytosolic domains, which serve to mediate binding of cofactors and subsequently activate signal transduction, for example, through the PI3K pathway or through reactive oxygen species (ROS)-mediated activation of the STAT3 pathway.[8] Downstream effects of this include regulation of gene expression and the cell cycle. The role of PI3K has been investigated by several laboratories. Accumulating data suggests that, while this molecule is, in general, part of growth signaling complex, it plays a more profound role in controlling cell migration.[9] The different ligand isoforms have variable affinities for the receptor isoforms, and the receptor isoforms may variably form hetero- or homo- dimers. This leads to specificity of downstream signaling. It has been shown that the cis oncogene is derived from the PDGF B-chain gene. PDGF-BB is the highest-affinity ligand for the PDGFR-beta; PDGFR-beta is a key marker of hepatic stellate cell activation in the process of fibrogenesis.[citation needed]


PDGFs are mitogenic during early developmental stages,driving the proliferation of undifferentiated mesenchyme and some progenitor populations. During later maturation stages, PDGF signalling has been implicated in tissue remodelling and cellular differentiation, and in inductive events involved in patterning and morphogenesis.In addition to driving mesenchymal proliferation,PDGFs have been shown to direct the migration, differentiation and function of a variety of specialised mesenchymal and migratory cell types, both during development and in the adult animal.[10] Other growth factors in this family include vascular endothelial growth factors B and C (VEGF-B, VEGF-C)[11][12] which are active in angiogenesis and endothelial cell growth, and placenta growth factor (PlGF) which is also active in angiogenesis.[13]

PDGF plays a role in embryonic development, cell proliferation, cell migration, and angiogenesis.[14] Over-expression of PDGF has been linked to several diseases such as atherosclerosis, fibrotic disorders and malignancies. Synthesis occurs due to external stimuli such as thrombin, low oxygen tension, or other cytokines and growth factors.[15]

PDGF is a required element in cellular division for fibroblasts, a type of connective tissue cell that is especially prevalent in wound healing.[15] In essence, the PDGFs allow a cell to skip the G1 checkpoints in order to divide.[16] It has been shown that in monocytes-macrophages and fibroblasts, exogenously administered PDGF stimulates chemotaxis, proliferation, and gene expression and significantly augmented the influx of inflammatory cells and fibroblasts, accelerating extracellular matrix and collagen formation and thus reducing the time for the healing process to occur.[17]

In terms of osteogenic differentiation of mesenchymal stem cells, comparing PDGF to epidermal growth factor (EGF), which is also implicated in stimulating cell growth, proliferation, and differentiation,[18] MSCs were shown to have stronger osteogenic differentiation into bone-forming cells when stimulated by epidermal growth factor (EGF) versus PDGF. However, comparing the signaling pathways between them reveals that the PI3K pathway is exclusively activated by PDGF, with EGF having no effect. Chemically inhibiting the PI3K pathway in PDGF-stimulated cells negates the differential effect between the two growth factors, and actually gives PDGF an edge in osteogenic differentiation.[18] Wortmannin is a PI3K-specific inhibitor, and treatment of cells with Wortmannin in combination with PDGF resulted in enhanced osteoblast differentiation compared to just PDGF alone, as well as compared to EGF.[18] These results indicate that the addition of Wortmannin can significantly increase the response of cells into an osteogenic lineage in the presence of PDGF, and thus might reduce the need for higher concentrations of PDGF or other growth factors, making PDGF a more viable growth factor for osteogenic differentiation than other, more expensive growth factors currently used in the field such as BMP2.[19]

PDGF is also known to maintain proliferation of oligodendrocyte progenitor cells.[20][21] It has also been shown that fibroblast growth factor (FGF) activates a signaling pathway that positively regulates the PDGF receptors in oligodendrocyte progenitor cells.[22]


PDGF was one of the first growth factors characterized,[23] and has led to an understanding of the mechanism of many growth factor signaling pathways.[citation needed]

Clinical significance[edit]

Like many other growth factors that have been linked to disease, PDGF and its receptors have provided a market for receptor antagonists to treat disease. Such antagonists include (but are not limited to) specific antibodies that target the molecule of interest, which act only in a neutralizing manner.[24]

The "c-Sis" oncogene is derived from PDGF.[21][25]

Age related downregulation of the PDGF receptor on islet beta cells has been demonstrated to prevent islet beta cell proliferation in both animal and human cells and its re-expression triggered beta cell proliferation and corrected glucose regulation via insulin secretion.[26][27]

A non-viral PDGF "bio patch" can regenerate missing or damaged bone by delivering DNA in a nano-sized particle directly into cells via genes. Repairing bone fractures, fixing craniofacial defects and improving dental implants are among potential uses. The patch employs a collagen platform seeded with particles containing the genes needed for producing bone. In experiments, it new bone fully covered skull wounds in test animals and stimulated growth in human bone marrow stromal cells.[28][29]

Family members[edit]

Human genes encoding proteins that belong to the platelet-derived growth factor family include:

See also[edit]


  1. ^ Hannink M, Donoghue DJ (1989). "Structure and function of platelet-derived growth factor (PDGF) and related proteins". Biochim. Biophys. Acta 989 (1): 1–10. PMID 2546599. 
  2. ^ Heldin CH (1992). "Structural and functional studies on platelet-derived growth factor". EMBO J. 11 (12): 4251–4259. PMC 556997. PMID 1425569. 
  3. ^ Minarcik, John. "Global Path Course: Video". Retrieved 2011-06-27. 
  4. ^ Kumar, Vinay (2010). Robbins and Coltran Pathologic Basis of Disease. China: Elsevier. pp. 88–89. ISBN 978-1-4160-3121-5. 
  5. ^ Matsui T, Heidaran M, Miki T, et al. (1989). "Isolation of a novel receptor cDNA establishes the existence of two PDGF receptor genes". Science 243 (4892): 800–4. doi:10.1126/science.2536956. PMID 2536956. 
  6. ^ Heidaran MA, Pierce JH, Yu JC, et al. (25 October 1991). "Role of alpha beta receptor heterodimer formation in beta platelet-derived growth factor (PDGF) receptor activation by PDGF-AB". J. Biol. Chem. 266 (30): 20232–7. PMID 1657917. 
  7. ^ Heidaran MA, Pierce JH, Jensen RA, Matsui T, Aaronson SA (5 November 1990). "Chimeric alpha- and beta-platelet-derived growth factor (PDGF) receptors define three immunoglobulin-like domains of the alpha-PDGF receptor that determine PDGF-AA binding specificity". J. Biol. Chem. 265 (31): 18741–4. PMID 2172231. 
  8. ^ Blazevic T, Schwaiberger AV, Schreiner CE, Schachner D, Schaible AM, Grojer CS, Atanasov AG, Werz O, Dirsch VM, Heiss EH (December 2013). "12/15-Lipoxygenase Contributes to Platelet-derived Growth Factor-induced Activation of Signal Transducer and Activator of Transcription 3". J. Biol. Chem. 288 (49): 35592–603. doi:10.1074/jbc.M113.489013. PMC 3853304. PMID 24165129. 
  9. ^ Yu JC, Li W, Wang LM, Uren A, Pierce JH, Heidaran MA (1995). "Differential requirement of a motif within the carboxyl-terminal domain of alpha-platelet-derived growth factor (alpha PDGF) receptor for PDGF focus forming activity chemotaxis, or growth". J. Biol. Chem. 270 (13): 7033–6. doi:10.1074/jbc.270.13.7033. PMID 7706238. 
  10. ^ Hoch RV, Soriano P (2003). "Roles of PDGF in animal development". Development 130 (20): 4769–4784. doi:10.1242/dev.00721. PMID 12952899. 
  11. ^ Joukov V, Pajusola K, Kaipainen A, Saksela O, Alitalo K, Olofsson B, von Euler G, Orpana A, Pettersson RF, Eriksson U (1996). "Vascular endothelial growth factor B, a novel growth factor for endothelial cells". Proc. Natl. Acad. Sci. U.S.A. 93 (6): 2567–2581. doi:10.1073/pnas.93.6.2576. PMC 39839. PMID 8637916. 
  12. ^ Joukov V, Pajusola K, Kaipainen A, Chilov D, Lahtinen I, Kukk E, Saksela O, Kalkkinen N, Alitalo K (1996). "A novel vascular endothelial growth factor, VEGF-C, is a ligand for the Flt4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases". EMBO J. 15 (2): 290–298. PMC 449944. PMID 8617204. 
  13. ^ Lei KJ, Alitalo K, Maglione D, Guerriero V, Viglietto G, Ferraro MG, Aprelikova O, Chou JY, Persico MG, Del Vecchio S (1993). "Two alternative mRNAs coding for the angiogenic factor, placenta growth factor (PlGF), are transcribed from a single gene of chromosome 14". Oncogene 8 (4): 925–931. PMID 7681160. 
  14. ^ "PDGF Pathways". Retrieved 2007-11-17. 
  15. ^ a b Alvarez RH, Kantarjian HM, Cortes JE (September 2006). "Biology of platelet-derived growth factor and its involvement in disease". Mayo Clin. Proc. 81 (9): 1241–57. doi:10.4065/81.9.1241. PMID 16970222. 
  16. ^ Song G, Ouyang G, Bao S (2005). "The activation of Akt/PKB signaling pathway and cell survival". J. Cell. Mol. Med. 9 (1): 59–71. PMID 15784165. 
  17. ^ Pierce GF, Mustoe TA, Altrock BW, Deuel TF, Thomason A (April 1991). "Role of platelet-derived growth factor in wound healing". J. Cell. Biochem. 45 (4): 319–26. doi:10.1002/jcb.240450403. PMID 2045423. 
  18. ^ a b c Kratchmarova I, Blagoev B, Haack-Sorensen M, Kassem M, Mann M (June 2005). "Mechanism of divergent growth factor effects in mesenchymal stem cell differentiation". Science 308 (5727): 1472–7. doi:10.1126/science.1107627. PMID 15933201. 
  19. ^ Hayashi, A. The New Standard of Care for Nonunions?. AAOS Now. 2009.
  20. ^ Barres BA, Hart IK, Coles HSR, Burne JF, Voyvodic JT, Richardson WD, Raff MC (1992). "Cell Death and Control of Cell Survival in the Oligodendrocyte Lineage". Cell 70 (1): 31–46. doi:10.1016/0092-8674(92)90531-G. PMID 1623522. 
  21. ^ a b Proto-Oncogene Proteins c-sis at the US National Library of Medicine Medical Subject Headings (MeSH)
  22. ^ McKinnon RD, Matsui T, Dubois-Dalcq M, Aaronson SA (November 1990). "FGF modulates the PDGF-driven pathway of oligodendrocyte development". Neuron 5 (5): 603–14. doi:10.1016/0896-6273(90)90215-2. PMID 2171589. 
  23. ^ Paul D, Lipton A, Klinger I (1971). "Serum factor requirements of normal and simian virus 40-transformed 3T3 mouse fibroplasts". Proc Natl Acad Sci U S A. 68 (3): 645–52. doi:10.1073/pnas.68.3.645. PMC 389008. PMID 5276775. 
  24. ^ Shulman T, Sauer FG, Jackman RM, Chang CN, Landolfi NF (July 1997). "An antibody reactive with domain 4 of the platelet-derived growth factor beta receptor allows BB binding while inhibiting proliferation by impairing receptor dimerization". J. Biol. Chem. 272 (28): 17400–4. doi:10.1074/jbc.272.28.17400. PMID 9211881. 
  25. ^ McClintock J, Chan I, Thaker S, Katial A, Taub F, Aotaki-Keen A, Hjelmeland L (1992). "Detection of c-sis proto-oncogene transcripts by direct enzyme-labeled cDNA probes and in situ hybridization". In Vitro Cell Dev Biol 28A (2): 102–8. doi:10.1007/BF02631013. PMID 1537750. 
  26. ^ "Researchers make older beta cells act young again". 2011-10-12. Retrieved 2013-12-28. 
  27. ^ "New Stanford molecular target for diabetes treatment discovered - Office of Communications & Public Affairs - Stanford University School of Medicine". 2011-10-12. Retrieved 2013-12-28. 
  28. ^ "Bio patch can regrow bone for dental implants and craniofacial defects". KurzweilAI. 2013-11-12. doi:10.1016/j.biomaterials.2013.10.021. Retrieved 2013-12-28. 
  29. ^ Elangovan, S.; d'Mello, S. R.; Hong, L.; Ross, R. D.; Allamargot, C.; Dawson, D. V.; Stanford, C. M.; Johnson, G. K.; Sumner, D. R.; Salem, A. K. (2014). "The enhancement of bone regeneration by gene activated matrix encoding for platelet derived growth factor". Biomaterials 35 (2): 737–747. doi:10.1016/j.biomaterials.2013.10.021. PMC 3855224. PMID 24161167.  edit

External links[edit]

This page is based on a Wikipedia article. The text is available under the Creative Commons Attribution/Share-Alike License.

This tab holds the annotation information that is stored in the Pfam database. As we move to using Wikipedia as our main source of annotation, the contents of this tab will be gradually replaced by the Wikipedia tab.

PDGF/VEGF domain Provide feedback

No Pfam abstract.

External database links

This tab holds annotation information from the InterPro database.

InterPro entry IPR000072

Platelet-derived growth factor (PDGF) [PUBMED:2546599, PUBMED:1425569] is a potent mitogen for cells of mesenchymal origin, including smooth muscle cells and glial cells. In both mouse and human, the PDGF signalling network consists of four ligands, PDGFA-D, and two receptors, PDGFRalpha and PDGFRbeta. All PDGFs function as secreted, disulphide-linked homodimers, but only PDGFA and B can form functional heterodimers. PDGFRs also function as homo- and heterodimers. All known PDGFs have characteristic `PDGF domains', which include eight conserved cysteines that are involved in inter- and intramolecular bonds. Alternate splicing of the A chain transcript can give rise to two different forms that differ only in their C-terminal extremity. The transforming protein of Woolly monkey sarcoma virus (WMSV) (Simian sarcoma virus), encoded by the v-sis oncogene, is derived from the B chain of PDGF.

PDGFs are mitogenic during early developmental stages, driving the proliferation of undifferentiated mesenchyme and some progenitor populations. During later maturation stages, PDGF signalling has been implicated in tissue remodelling and cellular differentiation, and in inductive events involved in patterning and morphogenesis. In addition to driving mesenchymal proliferation, PDGFs have been shown to direct the migration, differentiation and function of a variety of specialised mesenchymal and migratory cell types, both during development and in the adult animal [PUBMED:12952899]. Other growth factors in this family include vascular endothelial growth factors B and C (VEGF-B, VEGF-C) [PUBMED:8637916, PUBMED:8617204] which are active in angiogenesis and endothelial cell growth, and placenta growth factor (PlGF) which is also active in angiogenesis [PUBMED:7681160].

PDGF is structurally related to a number of other growth factors which also form disulphide-linked homo- or heterodimers.

Gene Ontology

The mapping between Pfam and Gene Ontology is provided by InterPro. If you use this data please cite InterPro.

Domain organisation

Below is a listing of the unique domain organisations or architectures in which this domain is found. More...

Loading domain graphics...

Pfam Clan

This family is a member of clan Cystine-knot (CL0079), which has the following description:

The cytokine families in this clan have the cystine-knot fold. In this 6 cysteines form three disulphide bridges that are interlinked.

The clan contains the following 9 members:

Coagulin Cys_knot DAN Hormone_6 NGF Noggin PDGF Sclerostin TGF_beta


We store a range of different sequence alignments for families. As well as the seed alignment from which the family is built, we provide the full alignment, generated by searching the sequence database using the family HMM. We also generate alignments using four representative proteomes (RP) sets, the NCBI sequence database, and our metagenomics sequence database. More...

View options

We make a range of alignments for each Pfam-A family. You can see a description of each above. You can view these alignments in various ways but please note that some types of alignment are never generated while others may not be available for all families, most commonly because the alignments are too large to handle.

Representative proteomes NCBI
Jalview View  View  View  View  View  View  View   
HTML View  View  View  View  View  View     
PP/heatmap 1 View  View  View  View  View     
Pfam viewer View  View             

1Cannot generate PP/Heatmap alignments for seeds; no PP data available

Key: ✓ available, x not generated, not available.

Format an alignment

Representative proteomes NCBI

Download options

We make all of our alignments available in Stockholm format. You can download them here as raw, plain text files or as gzip-compressed files.

Representative proteomes NCBI
Raw Stockholm Download   Download   Download   Download   Download   Download   Download    
Gzipped Download   Download   Download   Download   Download   Download   Download    

You can also download a FASTA format file containing the full-length sequences for all sequences in the full alignment.

External links

MyHits provides a collection of tools to handle multiple sequence alignments. For example, one can refine a seed alignment (sequence addition or removal, re-alignment or manual edition) and then search databases for remote homologs using HMMER3.

Pfam alignments:

HMM logo

HMM logos is one way of visualising profile HMMs. Logos provide a quick overview of the properties of an HMM in a graphical form. You can see a more detailed description of HMM logos and find out how you can interpret them here. More...


This page displays the phylogenetic tree for this family's seed alignment. We use FastTree to calculate neighbour join trees with a local bootstrap based on 100 resamples (shown next to the tree nodes). FastTree calculates approximately-maximum-likelihood phylogenetic trees from our seed alignment.

Note: You can also download the data file for the tree.

Curation and family details

This section shows the detailed information about the Pfam family. You can see the definitions of many of the terms in this section in the glossary and a fuller explanation of the scoring system that we use in the scores section of the help pages.

Curation View help on the curation process

Seed source: Prosite
Previous IDs: none
Type: Domain
Author: Finn RD, Bateman A
Number in seed: 57
Number in full: 855
Average length of the domain: 80.20 aa
Average identity of full alignment: 36 %
Average coverage of the sequence by the domain: 33.29 %

HMM information View help on HMM parameters

HMM build commands:
build method: hmmbuild -o /dev/null HMM SEED
search method: hmmsearch -Z 23193494 -E 1000 --cpu 4 HMM pfamseq
Model details:
Parameter Sequence Domain
Gathering cut-off 20.8 20.8
Trusted cut-off 22.8 21.5
Noise cut-off 19.4 19.4
Model length: 82
Family (HMM) version: 12
Download: download the raw HMM for this family

Species distribution

Sunburst controls


This visualisation provides a simple graphical representation of the distribution of this family across species. You can find the original interactive tree in the adjacent tab. More...

Loading sunburst data...

Tree controls


The tree shows the occurrence of this domain across different species. More...


Please note: for large trees this can take some time. While the tree is loading, you can safely switch away from this tab but if you browse away from the family page entirely, the tree will not be loaded.


There is 1 interaction for this family. More...



For those sequences which have a structure in the Protein DataBank, we use the mapping between UniProt, PDB and Pfam coordinate systems from the PDBe group, to allow us to map Pfam domains onto UniProt sequences and three-dimensional protein structures. The table below shows the structures on which the PDGF domain has been found. There are 99 instances of this domain found in the PDB. Note that there may be multiple copies of the domain in a single PDB structure, since many structures contain multiple copies of the same protein seqence.

Loading structure mapping...