Please note: this site relies heavily on the use of javascript. Without a javascript-enabled browser, this site will not function correctly. Please enable javascript and reload the page, or switch to a different browser.
82  structures 3846  species 1  interaction 6795  sequences 15  architectures

Family: PFK (PF00365)

Summary: Phosphofructokinase

Pfam includes annotations and additional family information from a range of different sources. These sources can be accessed via the tabs below.

This is the Wikipedia entry entitled "Phosphofructokinase". More...

Phosphofructokinase Edit Wikipedia article

"PFK" redirects here. PFK (Poulet Frit Kentucky) is also the name for KFC in Quebec. For the Polish hip-hop group, see Paktofonika.
Phosphofructokinase
Identifiers
Symbol Ppfruckinase
Pfam PF00365
InterPro IPR000023
PROSITE PDOC00336

Phosphofructokinase is a kinase enzyme that phosphorylates fructose 6-phosphate in glycolysis.

The enzyme-catalysed transfer of a phosphoryl group from ATP is an important reaction in a wide variety of biological processes.[1] One enzyme that utilizes this reaction is phosphofructokinase (PFK), which catalyses the phosphorylation of fructose-6-phosphate to fructose-1,6- bisphosphate, a key regulatory step in the glycolytic pathway.[2][3] PFK exists as a homotetramer in bacteria and mammals (where each monomer possesses 2 similar domains) and as an octomer in yeast (where there are 4 alpha- (PFK1) and 4 beta-chains (PFK2), the latter, like the mammalian monomers, possessing 2 similar domains[3]). This protein may use the morpheein model of allosteric regulation.[4]

PFK is about 300 amino acids in length, and structural studies of the bacterial enzyme have shown it comprises two similar (alpha/beta) lobes: one involved in ATP binding and the other housing both the substrate-binding site and the allosteric site (a regulatory binding site distinct from the active site, but that affects enzyme activity). The identical tetramer subunits adopt 2 different conformations: in a 'closed' state, the bound magnesium ion bridges the phosphoryl groups of the enzyme products (ADP and fructose-1,6- bisphosphate); and in an 'open' state, the magnesium ion binds only the ADP,[5] as the 2 products are now further apart. These conformations are thought to be successive stages of a reaction pathway that requires subunit closure to bring the 2 molecules sufficiently close to react.[5]

Deficiency in PFK leads to glycogenosis type VII (Tarui's disease), an autosomal recessive disorder characterised by severe nausea, vomiting, muscle cramps and myoglobinuria in response to bursts of intense or vigorous exercise.[3] Sufferers are usually able to lead a reasonably ordinary life by learning to adjust activity levels.[3]

There are two types of the enzyme:

Type Synonyms EC number Substrate Product Subunit genes
Phosphofructokinase 1 6-phosphofructokinase
phosphohexokinase
EC 2.7.1.11 Beta-D-fructose-6-phosphate wpmp.png
Fructose 6-phosphate
Beta-D-fructose-1,6-bisphosphate wpmp.png
Fructose-1,6-bisphosphate
PFKL, PFKM, PFKP
Phosphofructokinase 2 6-phosphofructo-2-kinase EC 2.7.1.105 Fructose 2,6-bisphosphate.svg
Fructose-2,6-bisphosphate
PFKFB1, PFKFB2, PFKFB3, PFKFB4

See also[edit]

References[edit]

  1. ^ Evans PR, Hellinga HW (1987). "Mutations in the active site of Escherichia coli phosphofructokinase". Nature 327 (6121): 437–439. doi:10.1038/327437a0. PMID 2953977. 
  2. ^ Wegener G, Krause U (2002). "Different modes of activating phosphofructokinase, a key regulatory enzyme of glycolysis, in working vertebrate muscle". Biochem. Soc. Trans. 30 (2): 264–270. PMID 12023862. 
  3. ^ a b c d Raben N, Exelbert R, Spiegel R, Sherman JB, Nakajima H, Plotz P, Heinisch J (1995). "Functional expression of human mutant phosphofructokinase in yeast: genetic defects in French Canadian and Swiss patients with phosphofructokinase deficiency". Am. J. Hum. Genet. 56 (1): 131–141. PMC 1801305. PMID 7825568. 
  4. ^ T. Selwood and E. K. Jaffe. (2011). "Dynamic dissociating homo-oligomers and the control of protein function.". Arch. Biochem. Biophys. 519 (2): 131–43. doi:10.1016/j.abb.2011.11.020. PMC 3298769. PMID 22182754. 
  5. ^ a b Shirakihara Y, Evans PR (1988). "Crystal structure of the complex of phosphofructokinase from Escherichia coli with its reaction products". J. Mol. Biol. 204 (4): 973–994. doi:10.1016/0022-2836(88)90056-3. PMID 2975709. 

External links[edit]

This article incorporates text from the public domain Pfam and InterPro IPR000023

This page is based on a Wikipedia article. The text is available under the Creative Commons Attribution/Share-Alike License.

This is the Wikipedia entry entitled "Phosphofructokinase 1". More...

Phosphofructokinase 1 Edit Wikipedia article

6-phosphofructokinase
Phosphofructokinase 6PFK wpmp.png
Identifiers
EC number 2.7.1.11
CAS number 9001-80-3
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Gene Ontology AmiGO / EGO
Phosphofructokinase
Identifiers
Symbol PFK
Pfam PF00365
Pfam clan CL0240
InterPro IPR000023
PROSITE PDOC00336
SCOP 5pfk
SUPERFAMILY 5pfk

Phosphofructokinase-1 (PFK-1) is one of the most important regulatory enzymes (EC 2.7.1.11) of glycolysis. It is an allosteric enzyme made of 4 subunits and controlled by many activators and inhibitors. PFK-1 catalyzes the important "committed" step of glycolysis, the conversion of fructose 6-phosphate and ATP to fructose 1,6-bisphosphate and ADP. Glycolysis is the foundation for respiration, both anaerobic and aerobic. Because phosphofructokinase (PFK) catalyzes the ATP-dependent phosphorylation to convert fructose-6-phosphate into fructose 1,6-bisphosphate and ADP, it is one of the key regulatory and rate limiting steps of glycolysis. PFK is able to regulate glycolysis through allosteric inhibition, and in this way, the cell can increase or decrease the rate of glycolysis in response to the cell’s energy requirements. For example high ratio of ATP to ADP will inhibit PFK and glycolysis. The key difference between the regulation of PFK in eukaryotes and prokaryotes is that in eukaryotes PFK is activated by fructose-2,6-bisphosphate. The purpose of fructose-2,6-bisphosphate is to supersede ATP inhibition, thus allowing eukaryotes to have greater sensitivity to regulation by hormones like glucagon and insulin.[1]

β-D-fructose 6-phosphate Phosphofructokinase-1 β-D-fructose 1,6-bisphosphate
Beta-D-fructose-6-phosphate wpmp.png   Beta-D-fructose-1,6-bisphosphate wpmp.png
ATP ADP
Biochem reaction arrow reversible YYYY horiz med.png
Pi H2O
 
  Fructose bisphosphatase

Structure[edit]

Mammalian PFK1 is a 340kd[2] tetramer composed of three types of subunit: muscle (M), liver (L), and platelet (P). The composition of the PFK1 tetramer differs according to the tissue type it is present in. For example, mature muscle expresses only the M isozyme, therefore, the muscle PFK1 is composed solely of homotetramers of M4. The liver and kidneys express predominantly the L isoform. Erythrocytes express both M and L subunits which randomly tetramerize to form M4, L4 and the three hybrid forms of the enzyme (ML3, M2L2, M3L). As a result, the kinetic and regulatory properties of the various isoenzymes pools are dependent on subunit composition. Tissue-specific changes in PFK activity and isoenzymic content contribute significantly to the diversities of glycolytic and gluconeogenic rates which have been observed for different tissues.[3]

PFK1 is an allosteric enzyme and has a structure similar to that of hemoglobin insofar as it is a dimer of a dimer.[4] One half of each dimer contains the ATP binding site whereas the other half the substrate (fructose-6-phosphate or (F6P)) binding site as well as a separate allosteric binding site.[5]

Each subunit of the tetramer is 319 amino acids and consists of two domain, one that binds the substrate ATP, and the other that binds fructose-6-phosphate. Each domain is a b barrel, and has cylindrical b sheet surrounded by alpha helices.

On the opposite side of the each subunit from each active site is the allosteric site, at the interface between subunits in the dimer. This is where ADP binds. The N-terminal domain has a catalytic role binding the ATP, and the C-terminal has a regulatory role [6]

Mechanism[edit]

PFK1 is an allosteric enzyme whose activity can be described using the symmetry model of allosterism[7] whereby there is a concerted transition from an enzymatically inactive T-state to the active R-state. F6P binds with a high affinity to the R state but not the T state enzyme. For every molecule of F6P that binds to PFK1, the enzyme progressively shifts from T state to the R state. Thus a graph plotting PFK1 activity against increasing F6P concentrations would adopt the sigmoidal curve shape traditionally associated with allosteric enzymes.

PFK1 belongs to the family of phosphotransferases and it catalyzes the transfer of γ-phosphate from ATP to fructose-6-phosphate. The PFK1 active site comprises both the ATP-Mg2+ and the F6P binding sites. Some proposed residues involved with substrate binding in E. coli FPK1 include Asp127 and Arg171.[8] In B. stearothermophilus PFK1, the positively charged side chain of Arg162 residue forms a hydrogen-bonded salt bridge with the negatively charged phosphate group of F6P, an interaction which stabilizes the R state relative to the T state and is partly responsible for the homotropic effect of F6P binding. In the T state, enzyme conformation shifts slightly such that the space previously taken up by the Arg162 is replaced with Glu161. This swap in positions between adjacent amino acid residues inhibits the ability of F6P to bind the enzyme.

Allosteric activators such as AMP and ADP bind to the allosteric site as to facilitate the formation of the R state by inducing structural changes in the enzyme. Similarly, inhibitors such as ATP and PEP bind to the same allosteric site and facilitate the formation of the T state, thereby inhibiting enzyme activity.

The hydroxyl oxygen of carbon 1 does a nucleophilic attack on the beta phosphate of ATP. These electrons are pushed to the anhydride oxygen between the beta and gamma phosphates of ATP.[9][10]

Mechanism of phosphofructokinase 1

Regulation[edit]

PFK1 is the most important control site in the mammalian glycolytic pathway. This step is subject to extensive regulation since it is not only highly exergonic under physiological conditions, but also because it is a committed step - the first irreversible reaction unique to the glycolytic pathway. This leads to a precise control of glucose and the other monosaccharides galactose and fructose going down the glycolytic pathway. Before this enzyme's reaction, glucose-6-phosphate can potentially travel down the pentose phosphate pathway, or be converted to glucose-1-phosphate for glycogenesis.

PFK1 is allosterically inhibited by high levels of ATP but AMP reverses the inhibitory action of ATP. Therefore, the activity of the enzyme increases when the cellular ATP/AMP ratio is lowered. Glycolysis is thus stimulated when energy charge falls. PFK1 has two sites with different affinities for ATP which is both a substrate and an inhibitor.[2]

PFK1 is also inhibited by low pH levels which augment the inhibitory effect of ATP. The pH falls when muscle is functioning anaerobically and producing excessive quantities of lactic acid. This inhibitory effect serves to protect the muscle from damage that would result from the accumulation of too much acid.[2]

Finally, PFK1 is allosterically inhibited by both PEP and ATP. Phosphoenolpyruvic acid is a product further downstream the glycolytic pathway. Contrary to popular belief found in biochemistry books, citrate is not an allosteric modulator of PFK-1 in vivo. Although, citrate does build up when the Kreb's Cycle enzymes approach their maximum velocity, citrate never builds up to a sufficient concentration to inhibit PFK-1[citation needed]. In vitro studies of PFK-1 mixed with citrate and substrate showed that citrate does inhibit PFK-1 but the concentration required is well above what is observed physiologically. ATP concentration build up indicates an excess of energy and does have a allosteric modulation site on PFK-1 where it decreases the affinity of PFK-1 for its substrate.

PFK1 is allosterically activated by a high concentration of AMP, but the most potent activator is fructose 2,6-bisphosphate, which is also produced from fructose-6-phosphate by PFK2. Hence, an abundance of F6P results in a higher concentration of fructose 2,6-bisphosphate (F-2,6-BP). The binding of F-2,6-BP increases the affinity of PFK1 for F6P and diminishes the inhibitory effect of ATP. This is an example of feedforward stimulation as glycolysis is accelerated when glucose is abundant.[2]

PFK is inhibited by glucagon through repression of synthesis. Glucagon activates protein kinase A which, in turn, shuts off the kinase activity of PFK2. This reverses any synthesis of F-2,6-BP from F6P and thus inhibits PFK1 activity.

The precise regulation of PFK1 prevents glycolysis and gluconeogenesis from occurring simultaneously. However, there is substrate cycling between F6P and F-1,6-BP. Fructose-1,6-bisphosphatase (FBPase) catalyzes the hydrolysis of F-1,6-BP back to F6P, the reverse reaction catalyzed by PFK1. There is a small amount of FBPase activity during glycolysis and some PFK1 activity during gluconeogenesis. This cycle allows for the amplification of metabolic signals as well as the generation of heat by ATP hydrolysis.

Serotonin (5-HT) increases PFK by binding to the 5-HT(2A) receptor, causing the tyrosine residue of PFK to be phosphorylated via phospholipase C. This in turn redistributes PFK within the skeletal muscle cells. Because PFK regulates glycolytic flux, serotonin plays a regulatory role in glycolysis [11]

Genes[edit]

There are three phosphofructokinase genes in humans:

Clinical significance[edit]

A genetic mutation in the PFKM gene results in Tarui's disease, a glycogen storage disease where the ability of certain cell types to utilize carbohydrates as a source of energy is impaired.[12]

Tarui Disease: Muscles which store glycogen require Tarui disease is a glycogen storage disease with symptoms including muscle weakness (myopathy) and exercise induced cramping and spasms, myoglobinuria (presence of myoglobin in urine, indicating muscle destruction) and compensated hemolysis. ATP is a natural allosteric inhibitor of PFK, in order to prevent unnecessary production of ATP through glycolysis. However, a mutation in Asp(543)Ala can result in ATP having a stronger inhibitory effect (due to increased binding to PFK’s inhibitory allosteric binding site)

[13][14]

Phosphofructokinase mutation and cancer: In order for cancer cells to meet their energy requirements due to their rapid cell growth and division, they survive more effectively when they have a hyperactive phosphofructokinase 1 enzyme. When cancer cells grow and divide quickly, they initially do not have as much blood supply, and can thus have hypoxia (oxygen deprivation), and this triggers O-GlcNAcylation at serine 529 of PFK, giving a selective growth advantage to cancer cells.[15]

[16][17][15]

Herpes simplex type 1 and phosphofructokinase: Some viruses, including HIV, HCMV, Mayaro, and HCMV affect cellular metabolic pathways such as glycolysis by a MOI-dependent increase in the activity of PFK. The mechanism that Herpes increases PFK activity is by phosphorylating the enzyme at the serine residues. The HSV-1 induced glycolysis increases ATP content, which is critical for the virus’s replication [18]

See also[edit]

  • PFK2 (converts fructose 6-phosphate to fructose 2,6-bisphosphate through on site, or the opposite, on another site)
  • PFP (reversibly interconverts fructose 6-phosphate and fructose 1,6-bisphosphate using inorganic pyrophosphate rather than ATP)
  • fructose bisphosphatase (hydrolyses fructose 1,6-bisphosphate to fructose 6-phosphate)

References[edit]

  1. ^ Usenik A, Legiša M (Nov 2010). "Evolution of allosteric citrate binding sites on 6-phosphofructo-1-kinase". In Kobe, Bostjan. PLOS ONE 5 (11): 677–683. doi:10.1371/journal.pone.0015447. PMC 2990764. PMID 21124851. 
  2. ^ a b c d Stryer L, Berg JM, Tymoczko JL (2007). Biochemistry (Sixth ed.). San Francisco: W.H. Freeman. ISBN 0-7167-8724-5. 
  3. ^ Dunaway GA, Kasten TP, Sebo T, Trapp R (May 1988). "Analysis of the phosphofructokinase subunits and isoenzymes in human tissues". Biochem. J. 251 (3): 677–83. PMC 1149058. PMID 2970843. 
  4. ^ PDB 4pfk; Evans PR, Farrants GW, Hudson PJ (June 1981). "Phosphofructokinase: structure and control". Philosophical Transactions of the Royal Society B 293 (1063): 53–62. doi:10.1098/rstb.1981.0059. PMID 6115424. Lay summary – PDB Molecule of the Month. 
  5. ^ Shirakihara Y, Evans PR (December 1988). "Crystal structure of the complex of phosphofructokinase from Escherichia coli with its reaction products". J. Mol. Biol. 204 (4): 973–94. doi:10.1016/0022-2836(88)90056-3. PMID 2975709. 
  6. ^ Banaszak K, Mechin I, Obmolova G, Oldham M, Chang SH, Ruiz T, Radermacher M, Kopperschläger G, Rypniewski W (March 2011). "The crystal structures of eukaryotic phosphofructokinases from baker's yeast and rabbit skeletal muscle". J Mol Biol. 402 (7): 284–97. doi:10.1016/j.jmb.2011.01.019. PMC 1149058. PMID 21241708. 
  7. ^ Peskov K, Goryanin I, Demin O (August 2008). "Kinetic model of phosphofructokinase-1 from Escherichia coli". J Bioinform Comput Biol 6 (4): 843–67. doi:10.1142/S0219720008003643. PMID 18763746. 
  8. ^ Hellinga HW, Evans PR (1987). "Mutations in the active site of Escherichia coli phosphofructokinase". Nature 327 (6121): 437–9. doi:10.1038/327437a0. PMID 2953977. 
  9. ^ Phong WY, Lin W, Rao SP, Dick T, Alonso S, Pethe K (Aug 2013). "Characterization of Phosphofructokinase Activity in Mycobacterium tuberculosis Reveals That a Functional Glycolytic Carbon Flow Is Necessary to Limit the Accumulation of Toxic Metabolic Intermediates under Hypoxia". In Parish, Tanya. PLOS ONE 8 (2): 1198–206. doi:10.1371/journal.pone.0056037. PMC 1149058. PMID 23409118. 
  10. ^ Papagianni M, Avramidis N (May 2012). "Engineering the central pathways in Lactococcus lactis: functional expression of the phosphofructokinase (pfk) and alternative oxidase (aox1) genes from Aspergillus niger in Lactococcus lactis facilitates improved carbon conversion rates under oxidizing conditions". Enzyme and Microbial Technology 51 (113): 125–30. doi:10.1016/j.enzmictec.2012.04.007. PMC 1149058. PMID 22759530. 
  11. ^ Coelho WS, Sola-Penna M (Jan 2013). "Serotonin regulates 6-phosphofructo-1-kinase activity in a PLC-PKC-CaMK II- and Janus kinase-dependent signaling pathway". Mol Cell Biochem. 372 (1–2): 211–20. doi:10.1007/s11010-012-1462-0. PMC 1149058. PMID 23010892. 
  12. ^ Nakajima H, Raben N, Hamaguchi T, Yamasaki T (March 2002). "Phosphofructokinase deficiency; past, present and future". Curr. Mol. Med. 2 (2): 197–212. doi:10.2174/1566524024605734. PMID 11949936. 
  13. ^ Bruser A, KirchbergerJ, Schoneberg T (Oct 2012). "AAltered allosteric regulation of muscle 6-phosphofructokinase causes Tarui disease". Biochem Biophys Res Commun 427 (1): 133–7. doi:10.1016/j.bbrc.2012.09.024. PMC 1149058. PMID 22995305. 
  14. ^ Brüser A, Kirchberger J, Schöneberg T (October 2012). "Altered allosteric regulation of muscle 6-phosphofructokinase causes Tarui disease". Biochem. Biophys. Res. Commun. 427 (1): 133–7. doi:10.1016/j.bbrc.2012.09.024. PMID 22995305. 
  15. ^ a b Yi W, Clark PM, Mason DE, Keenan MC, Hill C, Goddard WA 3rd, Peters EC, Driggers EM, Hsieh-Wilson LC (Aug 2012). "Phosphofructokinase 1 glycosylation regulates cell growth and metabolism". Science 337 (6097): 975–80. doi:10.1126/science.1222278. PMC 1149058. PMID 22923583. 
  16. ^ Gomez LS, Zancan P, Marcondes MC, Ramos-Santos L, Meyer-Fernandes JR, Sola-Penna M, Da Silva D (Feb 2013). "Resveratrol decreases breast cancer cell viability and glucose metabolism by inhibiting 6-phosphofructo-1-kinase". Biochimie. 1822 (8): 1198–206. doi:10.1016/j.biochi.2013.02.013. PMC 1149058. PMID 23454376. 
  17. ^ Vaz CV, Alves MG, Marques R, Moreira PI, Oliveira PF, Maia CJ, Socorro S (Feb 2013). "Resveratrol decreases breast cancer cell viability and glucose metabolism by inhibiting 6-phosphofructo-1-kinase". Int J Biochem Cell Biol. 44 (11): 2077–84. doi:10.1016/j.biocel.2012.08.013. PMC 1149058. PMID 22964025. 
  18. ^ Abrantes JL, Alves CM, Costa J, Almeida FC, Sola-Penna M, Fontes CF, Souza TM (Aug 2012). "Herpes simplex type 1 activates glycolysis through engagement of the enzyme 6-phosphofructo-1-kinase (PFK-1)". Biochim Biophys Acta. 1822 (8): 1198–206. doi:10.1016/j.bbadis.2012.04.011. PMC 1149058. PMID 22542512. 

External links[edit]


This page is based on a Wikipedia article. The text is available under the Creative Commons Attribution/Share-Alike License.

This tab holds the annotation information that is stored in the Pfam database. As we move to using Wikipedia as our main source of annotation, the contents of this tab will be gradually replaced by the Wikipedia tab.

Phosphofructokinase Provide feedback

No Pfam abstract.

External database links

This tab holds annotation information from the InterPro database.

InterPro entry IPR000023

The enzyme-catalysed transfer of a phosphoryl group from ATP is an important reaction in a wide variety of biological processes [PUBMED:2953977]. One enzyme that utilises this reaction is phosphofructokinase (PFK), which catalyses the phosphorylation of fructose-6-phosphate to fructose-1,6- bisphosphate, a key regulatory step in the glycolytic pathway [PUBMED:12023862, PUBMED:7825568]. PFK exists as a homotetramer in bacteria and mammals (where each monomer possesses 2 similar domains), and as an octomer in yeast (where there are 4 alpha- (PFK1) and 4 beta-chains (PFK2), the latter, like the mammalian monomers, possessing 2 similar domains [PUBMED:7825568]).

PFK is ~300 amino acids in length, and structural studies of the bacterial enzyme have shown it comprises two similar (alpha/beta) lobes: one involved in ATP binding and the other housing both the substrate-binding site and the allosteric site (a regulatory binding site distinct from the active site, but that affects enzyme activity). The identical tetramer subunits adopt 2 different conformations: in a 'closed' state, the bound magnesium ion bridges the phosphoryl groups of the enzyme products (ADP and fructose-1,6- bisphosphate); and in an 'open' state, the magnesium ion binds only the ADP [PUBMED:2975709], as the 2 products are now further apart. These conformations are thought to be successive stages of a reaction pathway that requires subunit closure to bring the 2 molecules sufficiently close to react [PUBMED:2975709].

Deficiency in PFK leads to glycogenosis type VII (Tauri's disease), an autosomal recessive disorder characterised by severe nausea, vomiting, muscle cramps and myoglobinuria in response to bursts of intense or vigorous exercise [PUBMED:7825568]. Sufferers are usually able to lead a reasonably ordinary life by learning to adjust activity levels [PUBMED:7825568].

Gene Ontology

The mapping between Pfam and Gene Ontology is provided by InterPro. If you use this data please cite InterPro.

Domain organisation

Below is a listing of the unique domain organisations or architectures in which this domain is found. More...

Loading domain graphics...

Pfam Clan

This family is a member of clan PFK (CL0240), which has the following description:

This clan includes two SCOP superfamilies. Strong similarities between NAD kinases, DAG kinase, sphingosine kinase and PFK have previously been shown[1].

The clan contains the following 3 members:

DAGK_cat NAD_kinase PFK

Alignments

We store a range of different sequence alignments for families. As well as the seed alignment from which the family is built, we provide the full alignment, generated by searching the sequence database using the family HMM. We also generate alignments using four representative proteomes (RP) sets, the NCBI sequence database, and our metagenomics sequence database. More...

View options

We make a range of alignments for each Pfam-A family. You can see a description of each above. You can view these alignments in various ways but please note that some types of alignment are never generated while others may not be available for all families, most commonly because the alignments are too large to handle.

  Seed
(12)
Full
(6795)
Representative proteomes NCBI
(4903)
Meta
(1585)
RP15
(732)
RP35
(1287)
RP55
(1714)
RP75
(2001)
Jalview View  View  View  View  View  View  View  View 
HTML View    View  View  View  View     
PP/heatmap 1   View  View  View  View     
Pfam viewer View  View             

1Cannot generate PP/Heatmap alignments for seeds; no PP data available

Key: ✓ available, x not generated, not available.

Format an alignment

  Seed
(12)
Full
(6795)
Representative proteomes NCBI
(4903)
Meta
(1585)
RP15
(732)
RP35
(1287)
RP55
(1714)
RP75
(2001)
Alignment:
Format:
Order:
Sequence:
Gaps:
Download/view:

Download options

We make all of our alignments available in Stockholm format. You can download them here as raw, plain text files or as gzip-compressed files.

  Seed
(12)
Full
(6795)
Representative proteomes NCBI
(4903)
Meta
(1585)
RP15
(732)
RP35
(1287)
RP55
(1714)
RP75
(2001)
Raw Stockholm Download   Download   Download   Download   Download   Download   Download   Download  
Gzipped Download   Download   Download   Download   Download   Download   Download   Download  

You can also download a FASTA format file containing the full-length sequences for all sequences in the full alignment.

External links

MyHits provides a collection of tools to handle multiple sequence alignments. For example, one can refine a seed alignment (sequence addition or removal, re-alignment or manual edition) and then search databases for remote homologs using HMMER3.

Pfam alignments:

HMM logo

HMM logos is one way of visualising profile HMMs. Logos provide a quick overview of the properties of an HMM in a graphical form. You can see a more detailed description of HMM logos and find out how you can interpret them here. More...

Trees

This page displays the phylogenetic tree for this family's seed alignment. We use FastTree to calculate neighbour join trees with a local bootstrap based on 100 resamples (shown next to the tree nodes). FastTree calculates approximately-maximum-likelihood phylogenetic trees from our seed alignment.

Note: You can also download the data file for the tree.

Curation and family details

This section shows the detailed information about the Pfam family. You can see the definitions of many of the terms in this section in the glossary and a fuller explanation of the scoring system that we use in the scores section of the help pages.

Curation View help on the curation process

Seed source: Prosite
Previous IDs: none
Type: Domain
Author: Finn RD
Number in seed: 12
Number in full: 6795
Average length of the domain: 268.50 aa
Average identity of full alignment: 35 %
Average coverage of the sequence by the domain: 74.02 %

HMM information View help on HMM parameters

HMM build commands:
build method: hmmbuild -o /dev/null HMM SEED
search method: hmmsearch -Z 23193494 -E 1000 --cpu 4 HMM pfamseq
Model details:
Parameter Sequence Domain
Gathering cut-off 20.3 20.3
Trusted cut-off 20.3 20.3
Noise cut-off 19.9 20.2
Model length: 282
Family (HMM) version: 15
Download: download the raw HMM for this family

Species distribution

Sunburst controls

Show

This visualisation provides a simple graphical representation of the distribution of this family across species. You can find the original interactive tree in the adjacent tab. More...

Loading sunburst data...

Tree controls

Hide

The tree shows the occurrence of this domain across different species. More...

Loading...

Please note: for large trees this can take some time. While the tree is loading, you can safely switch away from this tab but if you browse away from the family page entirely, the tree will not be loaded.

Interactions

There is 1 interaction for this family. More...

PFK

Structures

For those sequences which have a structure in the Protein DataBank, we use the mapping between UniProt, PDB and Pfam coordinate systems from the PDBe group, to allow us to map Pfam domains onto UniProt sequences and three-dimensional protein structures. The table below shows the structures on which the PFK domain has been found. There are 82 instances of this domain found in the PDB. Note that there may be multiple copies of the domain in a single PDB structure, since many structures contain multiple copies of the same protein seqence.

Loading structure mapping...