Please note: this site relies heavily on the use of javascript. Without a javascript-enabled browser, this site will not function correctly. Please enable javascript and reload the page, or switch to a different browser.
505  structures 45867  species 0  interactions 50634  sequences 4  architectures

Family: Hemagglutinin (PF00509)

Summary: Haemagglutinin

Pfam includes annotations and additional family information from a range of different sources. These sources can be accessed via the tabs below.

This is the Wikipedia entry entitled "Hemagglutinin (influenza)". More...

Hemagglutinin (influenza) Edit Wikipedia article

Hemagglutinin
PDB 1hgd EBI.jpg
Identifiers
Symbol Hemagglutinin
Pfam PF00509
InterPro IPR001364
SCOP 1hgd
SUPERFAMILY 1hgd
Influenza C hemagglutinin stalk
PDB 1flc EBI.jpg
x-ray structure of the haemagglutinin-esterase-fusion glycoprotein of influenza c virus
Identifiers
Symbol Hema_stalk
Pfam PF08720
InterPro IPR014831
SCOP 1flc
SUPERFAMILY 1flc

Influenza hemagglutinin (HA) or haemagglutinin (British English) is a glycoprotein found on the surface of the influenza viruses. It is responsible for binding the virus to cells with sialic acid on the membranes, such as cells in the upper respiratory tract or erythrocytes.[1] It is also responsible for the fusion of the viral envelope with the endosome membrane, after the pH has been reduced. The name "hemagglutinin" comes from the protein's ability to cause red blood cells (erythrocytes) to clump together ("agglutinate") in vitro.[2]

Subtypes[edit]

Structure of influenza, showing neuraminidase marked as NA and hemagglutinin as HA.

There are at least 18 different HA antigens. These subtypes are named H1 through H18. H16 was discovered only in 2004 on influenza A viruses isolated from black-headed gulls from Sweden and Norway. The most recent H17 was discovered in 2012 in fruit bats.[3][4] H18 was discovered in a Peruvian bat in 2013.[5] The first three hemagglutinins, H1, H2, and H3, are found in human influenza viruses.

Viral neuraminidase (NA) is another protein found on the surface of influenza. Influenza viruses are characterised by the type of HA and NA that they carry; hence H1N1, H5N2 etc.

A highly pathogenic avian flu virus of H5N1 type has been found to infect humans at a low rate. It has been reported that single amino acid changes in this avian virus strain's type H5 hemagglutinin have been found in human patients that "can significantly alter receptor specificity of avian H5N1 viruses, providing them with an ability to bind to receptors optimal for human influenza viruses".[6][7] This finding seems to explain how an H5N1 virus that normally does not infect humans can mutate and become able to efficiently infect human cells. The hemagglutinin of the H5N1 virus has been associated with the high pathogenicity of this flu virus strain, apparently due to its ease of conversion to an active form by proteolysis.[8][9]

Function and mechanism[edit]

HA has two functions. Firstly, it allows the recognition of target vertebrate cells, accomplished through the binding to these cells' sialic acid-containing receptors. Secondly, once bound it facilitates the entry of the viral genome into the target cells by causing the fusion of host endosomal membrane with the viral membrane.[10]

HA binds to the monosaccharide sialic acid which is present on the surface of its target cells, which causes the viral particles to stick to the cell's surface. The cell membrane then engulfs the virus and the portion of the membrane that encloses it pinches off to form a new membrane-bound compartment within the cell called an endosome, which contains the engulfed virus. The cell then attempts to begin digesting the contents of the endosome by acidifying its interior and transforming it into a lysosome. However, as soon as the pH within the endosome drops to about 6.0, the original folded structure of the HA molecule becomes unstable, causing it to partially unfold and release a very hydrophobic portion of its peptide chain that was previously hidden within the protein.[11]

This so-called "fusion peptide" acts like a molecular grappling hook by inserting itself into the endosomal membrane and locking on. Then, when the rest of the HA molecule refolds into a new structure (which is more stable at the lower pH), it "retracts the grappling hook" and pulls the endosomal membrane right up next to the virus particle's own membrane, causing the two to fuse together. Once this has happened, the contents of the virus, including its RNA genome, are free to pour out into the cell's cytoplasm.[citation needed]

Structure[edit]

HA is a homotrimeric integral membrane glycoprotein. It is shaped like a cylinder, and is approximately 13.5 nanometres long. The three identical monomers that constitute HA are constructed into a central α helix coil; three spherical heads contain the sialic acid binding sites. HA monomers are synthesized as precursors that are then glycosylated and cleaved into two smaller polypeptides: the HA1 and HA2 subunits. Each HA monomer consists of a long, helical chain anchored in the membrane by HA2 and topped by a large HA1 globule.

Neutralizing antibodies[edit]

Since hemagglutinin is the major surface protein of the influenza A virus and is essential to the entry process, it is the primary target of neutralizing antibodies. Neutralizing antibodies against flu have been found to act by two different mechanisms, mirroring the dual functions of hemagglutinin:

  1. Inhibition of attachment to target cells
  2. Inhibition of membrane fusion (entry)

Most commonly, antibodies against hemagglutinin act by inhibiting attachment. This is because these antibodies bind near the top of the hemagglutinin "head" (blue region in figure at right) and physically block the interaction with sialic acid receptors on target cells. In contrast, some antibodies have been found to have no effect on attachment. Instead, this latter group of antibodies acts by preventing membrane fusion. Most of these antibodies, like the human antibodies F10,[12] FI6,[13] CR6261, recognize sites in the stem/stalk region (orange region in figure at right), far away from the receptor binding site.[14][15]

The stem (also called HA2), contains most of the membrane fusion machinery of the hemagglutinin protein, and antibodies targeting this region block key structural changes that drive the membrane fusion process. However, at least one fusion-inhibiting antibody was found to bind closer to the top of hemagglutinin, and is thought to work by cross-linking the heads together, the opening of which is thought to be the first step in the membrane fusion process.[16]

See also[edit]

References[edit]

  1. ^ Russell RJ, Kerry PS, Stevens DJ, Steinhauer DA, Martin SR, Gamblin SJ, Skehel JJ (November 2008). "Structure of influenza hemagglutinin in complex with an inhibitor of membrane fusion". Proc. Natl. Acad. Sci. U.S.A. 105 (46): 17736–41. doi:10.1073/pnas.0807142105. PMC 2584702. PMID 19004788. 
  2. ^ Nelson DL, Cox MM (2005). Lehninger's Principles of Biochemistry (4th ed.). New York: WH Freeman. 
  3. ^ Fouchier RA, Munster V, Wallensten A, et al. (March 2005). "Characterization of a Novel Influenza A Virus Hemagglutinin Subtype (H16) Obtained from Black-Headed Gulls". J. Virol. 79 (5): 2814–22. doi:10.1128/JVI.79.5.2814-2822.2005. PMC 548452. PMID 15709000. 
  4. ^ Unique new flu virus found in bats http://www.nhs.uk/news/2012/03march/Pages/cdc-finds-h17-bat-influenza.aspx
  5. ^ Suxiang Tong et al. (October 2013). "New World Bats Harbor Diverse Influenza A Viruses". PLoS Pathogens. doi:10.1371/journal.ppat.1003657. 
  6. ^ Suzuki Y (March 2005). "Sialobiology of influenza: molecular mechanism of host range variation of influenza viruses". Biol. Pharm. Bull. 28 (3): 399–408. doi:10.1248/bpb.28.399. PMID 15744059. 
  7. ^ Gambaryan A, Tuzikov A, Pazynina G, Bovin N, Balish A, Klimov A (January 2006). "Evolution of the receptor binding phenotype of influenza A (H5) viruses". Virology 344 (2): 432–8. doi:10.1016/j.virol.2005.08.035. PMID 16226289. 
  8. ^ Hatta M, Gao P, Halfmann P, Kawaoka Y (September 2001). "Molecular basis for high virulence of Hong Kong H5N1 influenza A viruses". Science 293 (5536): 1840–2. doi:10.1126/science.1062882. PMID 11546875. 
  9. ^ Senne DA, Panigrahy B, Kawaoka Y, et al. (1996). "Survey of the hemagglutinin (HA) cleavage site sequence of H5 and H7 avian influenza viruses: amino acid sequence at the HA cleavage site as a marker of pathogenicity potential". Avian Dis. 40 (2): 425–37. doi:10.2307/1592241. JSTOR 1592241. PMID 8790895. 
  10. ^ White JM, Hoffman LR, Arevalo JH, et al. (1997). "Attachment and entry of influenza virus into host cells. Pivotal roles of hemagglutinin". In Chiu W, Burnett RM, Garcea RL. Structural Biology of Viruses. Oxford University Press. pp. 80–104. 
  11. ^ Stegmann T, Booy, P.F., Wilschut, J. Dec 1987, "Effects of Low pH on Influenza Virus" The Journal of Biological Chemistry, Vol. 262, No. 36, pp. 17744-17749, 1987
  12. ^ Sui J, Hwang WC, Perez S, Wei G, Aird D, Chen LM, Santelli E, Stec B, Cadwell G, Ali M, Wan H, Murakami A, Yammanuru A, Han T, Cox NJ, Bankston LA, Donis RO, Liddington RC, Marasco WA (March 2009). "Structural and functional bases for broad-spectrum neutralization of avian and human influenza A viruses". Nat. Struct. Mol. Biol. 16 (3): 265–73. doi:10.1038/nsmb.1566. PMC 2692245. PMID 19234466. 
  13. ^ Corti D, Voss J, Gamblin SJ, Codoni G, Macagno A, Jarrossay D, Vachieri SG, Pinna D, Minola A, Vanzetta F, Silacci C, Fernandez-Rodriguez BM, Agatic G, Bianchi S, Giacchetto-Sasselli I, Calder L, Sallusto F, Collins P, Haire LF, Temperton N, Langedijk JP, Skehel JJ, Lanzavecchia A (August 2011). "A neutralizing antibody selected from plasma cells that binds to group 1 and group 2 influenza A hemagglutinins". Science 333 (6044): 850–6. doi:10.1126/science.1205669. PMID 21798894. 
  14. ^ Throsby M, van den Brink E, Jongeneelen M, Poon LL, Alard P, Cornelissen L, Bakker A, Cox F, van Deventer E, Guan Y, Cinatl J, ter Meulen J, Lasters I, Carsetti R, Peiris M, de Kruif J, Goudsmit J (2008). "Heterosubtypic neutralizing monoclonal antibodies cross-protective against H5N1 and H1N1 recovered from human IgM+ memory B cells". PLoS ONE 3 (12): e3942. doi:10.1371/journal.pone.0003942. PMC 2596486. PMID 19079604. 
  15. ^ Ekiert DC, Bhabha G, Elsliger MA, Friesen RH, Jongeneelen M, Throsby M, Goudsmit J, Wilson IA (April 2009). "Antibody recognition of a highly conserved influenza virus epitope". Science 324 (5924): 246–51. doi:10.1126/science.1171491. PMC 2758658. PMID 19251591. 
  16. ^ Barbey-Martin C, Gigant B, Bizebard T, Calder LJ, Wharton SA, Skehel JJ, Knossow M (March 2002). "An antibody that prevents the hemagglutinin low pH fusogenic transition". Virology 294 (1): 70–4. doi:10.1006/viro.2001.1320. PMID 11886266. 

Further reading[edit]

This page is based on a Wikipedia article. The text is available under the Creative Commons Attribution/Share-Alike License.

This tab holds the annotation information that is stored in the Pfam database. As we move to using Wikipedia as our main source of annotation, the contents of this tab will be gradually replaced by the Wikipedia tab.

Haemagglutinin Provide feedback

Hemagglutinin from influenza virus causes membrane fusion of the viral membrane with the host membrane. Fusion occurs after the host cell internalises the virus by endocytosis. The drop of pH causes release of a hydrophobic fusion peptide and a large conformational change leading to membrane fusion.

External database links

This tab holds annotation information from the InterPro database.

InterPro entry IPR001364

Haemagglutinin (HA) is one of two main surface fusion glycoproteins embedded in the envelope of influenza viruses, the other being neuraminidase (NA). There are sixteen known HA subtypes (H1-H16) and nine NA subtypes (N1-N9), which together are used to classify influenza viruses (e.g. H5N1). The antigenic variations in HA and NA enable the virus to evade host antibodies made to previous influenza strains, accounting for recurrent influenza epidemics [PUBMED:16178512]. The HA glycoprotein is present in the viral membrane as a single polypeptide (HA0), which must be cleaved by the host's trypsin-like proteases to produce two peptides (HA1 and HA2) in order for the virus to be infectious. Once HA0 is cleaved, the newly exposed N-terminal of the HA2 peptide then acts to fuse the viral envelope to the cellular membrane of the host cell, which allows the viral negative-stranded RNA to infect the host cell. The type of host protease can influence the infectivity and pathogenicity of the virus.

The haemagglutinin glycoprotein is a trimer containing three structurally distinct regions: a globular head consisting of anti-parallel beta-sheets that form a beta-sandwich with a jelly-roll fold (contains the receptor binding site and the HA1/HA2 cleavage site); a triple-stranded, coiled-coil, alpha-helical stalk; and a globular foot composed of anti-parallel beta-sheets [PUBMED:16543414, PUBMED:15475582]. Each monomer consists of an intact HA0 polypeptide with the HA1 and HA2 regions linked by disulphide bonds. The N terminus of HA1 provides the central strand in the 5-stranded globular foot, while the rest of the HA1 chain makes its way to the 8-stranded globular head. HA2 provides two alpha helices, which form part of the triple-stranded coiled-coil that stabilises the trimer, its C terminus providing the remaining strands of the 5-stranded globular foot.

This entry represents the entire haemagglutinin protein (HA0) consisting of both the HA1 and HA2 regions, as found in influenza A and B viruses.

Gene Ontology

The mapping between Pfam and Gene Ontology is provided by InterPro. If you use this data please cite InterPro.

Domain organisation

Below is a listing of the unique domain organisations or architectures in which this domain is found. More...

Loading domain graphics...

Alignments

We store a range of different sequence alignments for families. As well as the seed alignment from which the family is built, we provide the full alignment, generated by searching the sequence database using the family HMM. We also generate alignments using four representative proteomes (RP) sets, the NCBI sequence database, and our metagenomics sequence database. More...

View options

We make a range of alignments for each Pfam-A family. You can see a description of each above. You can view these alignments in various ways but please note that some types of alignment are never generated while others may not be available for all families, most commonly because the alignments are too large to handle.

  Seed
(15)
Full
(50634)
Representative proteomes NCBI
(30865)
Meta
(0)
RP15
(2)
RP35
(4)
RP55
(4)
RP75
(5)
Jalview View  View  View  View  View  View  View   
HTML View    View  View  View  View     
PP/heatmap 1   View  View  View  View     
Pfam viewer View  View             

1Cannot generate PP/Heatmap alignments for seeds; no PP data available

Key: ✓ available, x not generated, not available.

Format an alignment

  Seed
(15)
Full
(50634)
Representative proteomes NCBI
(30865)
Meta
(0)
RP15
(2)
RP35
(4)
RP55
(4)
RP75
(5)
Alignment:
Format:
Order:
Sequence:
Gaps:
Download/view:

Download options

We make all of our alignments available in Stockholm format. You can download them here as raw, plain text files or as gzip-compressed files.

  Seed
(15)
Full
(50634)
Representative proteomes NCBI
(30865)
Meta
(0)
RP15
(2)
RP35
(4)
RP55
(4)
RP75
(5)
Raw Stockholm Download   Download   Download   Download   Download   Download   Download    
Gzipped Download   Download   Download   Download   Download   Download   Download    

You can also download a FASTA format file containing the full-length sequences for all sequences in the full alignment.

External links

MyHits provides a collection of tools to handle multiple sequence alignments. For example, one can refine a seed alignment (sequence addition or removal, re-alignment or manual edition) and then search databases for remote homologs using HMMER3.

Pfam alignments:

HMM logo

HMM logos is one way of visualising profile HMMs. Logos provide a quick overview of the properties of an HMM in a graphical form. You can see a more detailed description of HMM logos and find out how you can interpret them here. More...

Trees

This page displays the phylogenetic tree for this family's seed alignment. We use FastTree to calculate neighbour join trees with a local bootstrap based on 100 resamples (shown next to the tree nodes). FastTree calculates approximately-maximum-likelihood phylogenetic trees from our seed alignment.

Note: You can also download the data file for the tree.

Curation and family details

This section shows the detailed information about the Pfam family. You can see the definitions of many of the terms in this section in the glossary and a fuller explanation of the scoring system that we use in the scores section of the help pages.

Curation View help on the curation process

Seed source: Pfam-B_26 (release 1.0)
Previous IDs: none
Type: Family
Author: Finn RD
Number in seed: 15
Number in full: 50634
Average length of the domain: 432.00 aa
Average identity of full alignment: 51 %
Average coverage of the sequence by the domain: 96.33 %

HMM information View help on HMM parameters

HMM build commands:
build method: hmmbuild -o /dev/null HMM SEED
search method: hmmsearch -Z 23193494 -E 1000 --cpu 4 HMM pfamseq
Model details:
Parameter Sequence Domain
Gathering cut-off 20.2 20.2
Trusted cut-off 20.2 20.2
Noise cut-off 20.1 20.1
Model length: 550
Family (HMM) version: 13
Download: download the raw HMM for this family

Species distribution

Sunburst controls

Show

This visualisation provides a simple graphical representation of the distribution of this family across species. You can find the original interactive tree in the adjacent tab. More...

Loading sunburst data...

Tree controls

Hide

The tree shows the occurrence of this domain across different species. More...

Loading...

Please note: for large trees this can take some time. While the tree is loading, you can safely switch away from this tab but if you browse away from the family page entirely, the tree will not be loaded.

Structures

For those sequences which have a structure in the Protein DataBank, we use the mapping between UniProt, PDB and Pfam coordinate systems from the PDBe group, to allow us to map Pfam domains onto UniProt sequences and three-dimensional protein structures. The table below shows the structures on which the Hemagglutinin domain has been found. There are 505 instances of this domain found in the PDB. Note that there may be multiple copies of the domain in a single PDB structure, since many structures contain multiple copies of the same protein seqence.

Loading structure mapping...