Please note: this site relies heavily on the use of javascript. Without a javascript-enabled browser, this site will not function correctly. Please enable javascript and reload the page, or switch to a different browser.
54  structures 4456  species 2  interactions 4817  sequences 8  architectures

Family: DNA_pol3_beta (PF00712)

Summary: DNA polymerase III beta subunit, N-terminal domain

Pfam includes annotations and additional family information from a range of different sources. These sources can be accessed via the tabs below.

This is the Wikipedia entry entitled "DNA clamp". More...

DNA clamp Edit Wikipedia article

Top and side views of a homotrimer of the human PCNA sliding clamp (rainbow colored, N-terminus = blue, C-terminus = red) with double stranded DNA modeled through the central pore (magenta).[1]

A DNA clamp, also known as a sliding clamp, is a protein fold that serves as a processivity-promoting factor in DNA replication. As a critical component of the DNA polymerase III holoenzyme, the clamp protein binds DNA polymerase and prevents this enzyme from dissociating from the template DNA strand. The clamp-polymerase protein–protein interactions are stronger and more specific than the direct interactions between the polymerase and the template DNA strand; because one of the rate-limiting steps in the DNA synthesis reaction is the association of the polymerase with the DNA template, the presence of the sliding clamp dramatically increases the number of nucleotides that the polymerase can add to the growing strand per association event. The presence of the DNA clamp can increase the rate of DNA synthesis up to 1,000-fold compared with a nonprocessive polymerase.[2]

Structure[edit]

The DNA clamp fold is an α+β protein that assembles into a multimeric structure that completely encircles the DNA double helix as the polymerase adds nucleotides to the growing strand.[3] The DNA clamp assembles on the DNA at the replication fork and "slides" along the DNA with the advancing polymerase, aided by a layer of water molecules in the central pore of the clamp between the DNA and the protein surface. Because of the toroidal shape of the assembled multimer, the clamp cannot dissociate from the template strand without also dissociating into monomers.

The DNA clamp fold is found in bacteria, archaea, eukaryotes and some viruses. In bacteria, the sliding clamp is a homodimer composed of two identical beta subunits of DNA polymerase III and hence is referred to as the beta clamp. In archaea[4] and eukaryotes, it is a trimer composed of three molecules of PCNA. The T4 bacteriophage also uses a sliding clamp, called gp45 that is a trimer similar in structure to PCNA but lacks sequence homology to either PCNA or the bacterial beta clamp.[3]

Kingdom Sliding clamp protein Aggregation state Associated polymerase
Bacteria beta subunit of pol III dimer DNA polymerase III
Archaea archaeal PCNA trimer pol ε
Eukaryote PCNA trimer DNA polymerase delta
Virus gp43 / gp45 trimer RB69 Pol / T4 Pol

Bacterial[edit]

DNA polymerase III subunit beta
E coli beta clamp 1MMI.png
Crystallographic structure of the dimeric DNA polymerase beta subunit from E. coli.[5]
Identifiers
Organism Escherichia coli
Symbol dnaN
Entrez 948218
PDB 1MMI
RefSeq (Prot) NP_418156
UniProt P0A988
Other data
EC number 2.7.7.7
Chromosome MG1655: 3.88 - 3.88 Mb

The beta clamp is a specific DNA clamp and a subunit of the DNA polymerase III holoenzyme found in bacteria. Two beta subunits are assembled around the DNA by the gamma subunit and ATP hydrolysis; this assembly is called the pre-initiation complex. After assembly around the DNA, the beta subunits' affinity for the gamma subunit is replaced by an affinity for the alpha and epsilon subunits, which together create the complete holoenzyme.[6][7][8] DNA polymerase III is the primary enzyme complex involved in prokaryotic DNA replication.

The gamma complex of DNA polymerase III, composed of γδδ'χψ subunits, catalyzes ATP to chaperone two beta subunits to bind to DNA. Once bound to DNA, the beta subunits can freely slide along double stranded DNA. The beta subunits in turn bind the αε polymerase complex. The α subunit possesses DNA polymerase activity and the ε subunit is a 3’-5’ exonuclease.[8]

The beta chain of bacterial DNA polymerase III is composed of three topologically non-equivalent domains (N-terminal, central, and C-terminal). Two beta chain molecules are tightly associated to form a closed ring encircling duplex DNA.

DNA polymerase III, beta chain
Identifiers
Symbol DNA_polIII_beta
Pfam PF00712
InterPro IPR001001
SMART SM00480
SCOP 2pol
SUPERFAMILY 2pol
DNA polymerase III, beta chain,
N-terminal
Identifiers
Symbol DNA_pol3_beta
Pfam PF00712
InterPro IPR022634
DNA polymerase III, beta chain,
central
Identifiers
Symbol DNA_pol3_beta_2
Pfam PF02767
InterPro IPR022637
DNA polymerase III, beta chain,
C-terminal
Identifiers
Symbol DNA_pol3_beta_3
Pfam PF02768
InterPro IPR022635


Eukaryote[edit]

proliferating cell nuclear antigen
1axc tricolor.png
The assembled human DNA clamp, a trimer of the human protein PCNA.[9]
Identifiers
Symbol PCNA
Entrez 5111
HUGO 8729
OMIM 176740
PDB 1axc (RCSB PDB PDBe PDBj)
RefSeq NM_002592
UniProt P12004
Other data
Locus Chr. 20 pter-p12

The sliding clamp in eukaryotes is assembled from a specific subunit of DNA polymerase delta called the proliferating cell nuclear antigen (PCNA). The N-terminal and C-terminal domains of PCNA are topologically identical. Three PCNA molecules are tightly associated to form a closed ring encircling duplex DNA.

The sequence of PCNA is well conserved between plants and animals, indicating a strong selective pressure for structure conservation, and suggesting that this type of DNA replication mechanism is conserved throughout eukaryotes.[10] Homologues of PCNA have also been identified in the archaea (Euryarchaeota and Crenarchaeota) and in Paramecium bursaria Chlorella virus 1 (PBCV-1) and in nuclear polyhedrosis viruses.

Proliferating cell nuclear antigen, N-terminal domain
Identifiers
Symbol PCNA_N
Pfam PF00705
InterPro IPR000730
PROSITE PDOC00265
SCOP 1plq
SUPERFAMILY 1plq
Proliferating cell nuclear antigen, C-terminal domain
Identifiers
Symbol PCNA_C
Pfam PF02747
InterPro IPR000730
PROSITE PDOC00265
SCOP 1plq
SUPERFAMILY 1plq


Viral[edit]

DNA polymerase accessory protein 45
1CZD.png
Crystallographic structure of the trimeric gp45 sliding clamp from bacteriophage T4.[11]
Identifiers
Organism Enterobacteria phage T4
Symbol gp45
Entrez 1258821
PDB 1CZD
RefSeq (Prot) NP_049666
UniProt P04525
Other data
EC number 2.7.7.7
Chromosome 1: 0.03 - 0.03 Mb

The viral gp45 sliding clamp subunit protein contains two domains. Each domain consists of two alpha helices and two beta sheets – the fold is duplicated and has internal pseudo two-fold symmetry.[12] Three gp45 molecules are tightly associated to form a closed ring encircling duplex DNA.

Gp45 sliding clamp, N-terminal
Identifiers
Symbol DNA_pol_proc_fac
Pfam PF02916
InterPro IPR004190
Gp45 sliding clamp, C-terminal
Identifiers
Symbol Gp45_slide_clamp_C
Pfam PF09116
InterPro IPR015200


Assembly[edit]

Sliding clamps are loaded onto their associated DNA template strands by specialized proteins known as "sliding clamp loaders", which also disassemble the clamps after replication has completed. The binding sites for these initiator proteins overlap with the binding sites for the DNA polymerase, so the clamp cannot simultaneously associate with a clamp loader and with a polymerase. Thus the clamp will not be actively disassembled while the polymerase remains bound. DNA clamps also associate with other factors involved in DNA and genome homeostasis, such as nucleosome assembly factors, Okazaki fragment ligases, and DNA repair proteins. All of these proteins also share a binding site on the DNA clamp that overlaps with the clamp loader site, ensuring that the clamp will not be removed while any enzyme is still working on the DNA. The activity of the clamp loader requires ATP hydrolysis to "close" the clamp around the DNA.

References[edit]

  1. ^ PDB 1W60; Kontopidis G, Wu SY, Zheleva DI, Taylor P, McInnes C, Lane DP, Fischer PM, Walkinshaw MD (February 2005). "Structural and biochemical studies of human proliferating cell nuclear antigen complexes provide a rationale for cyclin association and inhibitor design". Proc. Natl. Acad. Sci. U.S.A. 102 (6): 1871–6. doi:10.1073/pnas.0406540102. PMC 548533. PMID 15681588. 
  2. ^ V. Mizrahi, R. N. Henrie, J. F. Marlier, K. A. Johnson, S. J. Benkovic (1985). "Rate-limiting steps in the DNA polymerase I reaction pathway". Biochemistry 24 (15): 4010–4018. doi:10.1021/bi00336a031. 
  3. ^ a b Bruck I, O'Donnell M (2001). "The ring-type polymerase sliding clamp family". Genome Biol. 2 (1): REVIEWS3001. doi:10.1186/gb-2001-2-1-reviews3001. PMC 150441. PMID 11178284. 
  4. ^ Matsumiya S, Ishino Y, Morikawa K (January 2001). "Crystal structure of an archaeal DNA sliding clamp: Proliferating cell nuclear antigen from Pyrococcus furiosus". Protein Sci. 10 (1): 17–23. doi:10.1110/ps.36401. PMC 2249843. PMID 11266590. 
  5. ^ PDB 1MMI; Oakley AJ, Prosselkov P, Wijffels G, Beck JL, Wilce MC, Dixon NE (July 2003). "Flexibility revealed by the 1.85 Å crystal structure of the beta sliding-clamp subunit of Escherichia coli DNA polymerase III". Acta Crystallogr. D Biol. Crystallogr. 59 (Pt 7): 1192–9. doi:10.1107/S0907444903009958. PMID 12832762. 
  6. ^ Lewin, Benjamin (1997). Genes VI. Oxford [Oxfordshire]: Oxford University Press. pp. 484–7. ISBN 0-19-857779-6. 
  7. ^ Lehninger, Albert L (1975). Biochemistry: The Molecular Basis of Cell Structure and Function. New York: Worth Publishers. p. 894. ISBN 0-87901-047-9. 
  8. ^ a b Stukenberg PT, Studwell-Vaughan PS, O'Donnell M (June 1991). "Mechanism of the sliding beta-clamp of DNA polymerase III holoenzyme". J. Biol. Chem. 266 (17): 11328–34. PMID 2040637. 
  9. ^ PDB 1AXC; Gulbis JM, Kelman Z, Hurwitz J, O'Donnell M, Kuriyan J (October 1996). "Structure of the C-terminal region of p21(WAF1/CIP1) complexed with human PCNA". Cell 87 (2): 297–306. doi:10.1016/S0092-8674(00)81347-1. PMID 8861913. 
  10. ^ Suzuka I, Hata S, Matsuoka M, Kosugi S, Hashimoto J (January 1991). "Highly conserved structure of proliferating cell nuclear antigen (DNA polymerase delta auxiliary protein) gene in plants". Eur. J. Biochem. 195 (2): 571–5. doi:10.1111/j.1432-1033.1991.tb15739.x. PMID 1671766. 
  11. ^ PDB 1CZD; Moarefi I, Jeruzalmi D, Turner J, O'Donnell M, Kuriyan J (March 2000). "Crystal structure of the DNA polymerase processivity factor of T4 bacteriophage". J. Mol. Biol. 296 (5): 1215–23. doi:10.1006/jmbi.1999.3511. PMID 10698628. 
  12. ^ Steitz TA, Shamoo Y (1999). "Building a replisome from interacting pieces: sliding clamp complexed to a peptide from DNA polymerase and a polymerase editing complex". Cell 99 (2): 155–166. doi:10.1016/S0092-8674(00)81647-5. PMID 10535734. 

Further reading[edit]

External links[edit]

This page is based on a Wikipedia article. The text is available under the Creative Commons Attribution/Share-Alike License.

This tab holds the annotation information that is stored in the Pfam database. As we move to using Wikipedia as our main source of annotation, the contents of this tab will be gradually replaced by the Wikipedia tab.

DNA polymerase III beta subunit, N-terminal domain Provide feedback

A dimer of the beta subunit of DNA polymerase beta forms a ring which encircles duplex DNA. Each monomer contains three domains of identical topology and DNA clamp fold.

Literature references

  1. Kong XP, Onrust R, O'Donnell M, Kuriyan J; , Cell 1992;69:425-437.: Three-dimensional structure of the beta subunit of E. coli DNA polymerase III holoenzyme: a sliding DNA clamp. PUBMED:1349852 EPMC:1349852


Internal database links

External database links

This tab holds annotation information from the InterPro database.

InterPro entry IPR022634

This entry describes the N-terminal domain of the beta chain of DNA polymerase III. This is a complex, multichain enzyme responsible for most of the replicative synthesis in bacteria. The beta chain is required for initiation of replication from an RNA primer, nucleotide triphosphate (dNTP) residues being added to the 5'-end of the growing DNA chain.

Gene Ontology

The mapping between Pfam and Gene Ontology is provided by InterPro. If you use this data please cite InterPro.

Domain organisation

Below is a listing of the unique domain organisations or architectures in which this domain is found. More...

Loading domain graphics...

Pfam Clan

This family is a member of clan DNA_clamp (CL0060), which has the following description:

Sliding DNA clamps are ring-shaped proteins that allow DNA polymerase to achieve high processivity during chromosome replication by tethering the polymerase catalytic subunit to DNA. All of the structures share a 12-fold symmetry around the ring consisting of a simple structural repeat, though there is structural divergence in some of the repeats. Bacterial beta-clamps contain six repeats per subunit with two subunits per ring while the eukaryotic and bacteriophage clamps contain four repeats per subunit with three subunits per ring. Pairs of these repeats form a domain, which has been termed the 'processivity fold'; thus the ring of the sliding clamp contains six domains and therefore is often described as having 6-fold symmetry. A structural representative of a fourth family of processivity fold proteins, namely the herpes simplex virus UL42 protein, is also available. UL42 does not form a ring-shaped clamp, however, but rather functions as a monomer and interacts with DNA quite differently than do sliding clamps; it has been suggested that UL42 resembles a primitive ancestor of sliding clamps [2].

The clan contains the following 10 members:

DNA_pol3_beta DNA_pol3_beta_2 DNA_pol3_beta_3 DNA_PPF Herpes_UL42 Hus1 PCNA_C PCNA_N Rad1 Rad9

Alignments

We store a range of different sequence alignments for families. As well as the seed alignment from which the family is built, we provide the full alignment, generated by searching the sequence database using the family HMM. We also generate alignments using four representative proteomes (RP) sets, the NCBI sequence database, and our metagenomics sequence database. More...

View options

We make a range of alignments for each Pfam-A family. You can see a description of each above. You can view these alignments in various ways but please note that some types of alignment are never generated while others may not be available for all families, most commonly because the alignments are too large to handle.

  Seed
(15)
Full
(4817)
Representative proteomes NCBI
(4270)
Meta
(2846)
RP15
(348)
RP35
(678)
RP55
(861)
RP75
(1006)
Jalview View  View  View  View  View  View  View  View 
HTML View  View  View  View  View  View     
PP/heatmap 1 View  View  View  View  View     
Pfam viewer View  View             

1Cannot generate PP/Heatmap alignments for seeds; no PP data available

Key: ✓ available, x not generated, not available.

Format an alignment

  Seed
(15)
Full
(4817)
Representative proteomes NCBI
(4270)
Meta
(2846)
RP15
(348)
RP35
(678)
RP55
(861)
RP75
(1006)
Alignment:
Format:
Order:
Sequence:
Gaps:
Download/view:

Download options

We make all of our alignments available in Stockholm format. You can download them here as raw, plain text files or as gzip-compressed files.

  Seed
(15)
Full
(4817)
Representative proteomes NCBI
(4270)
Meta
(2846)
RP15
(348)
RP35
(678)
RP55
(861)
RP75
(1006)
Raw Stockholm Download   Download   Download   Download   Download   Download   Download   Download  
Gzipped Download   Download   Download   Download   Download   Download   Download   Download  

You can also download a FASTA format file containing the full-length sequences for all sequences in the full alignment.

External links

MyHits provides a collection of tools to handle multiple sequence alignments. For example, one can refine a seed alignment (sequence addition or removal, re-alignment or manual edition) and then search databases for remote homologs using HMMER3.

Pfam alignments:

HMM logo

HMM logos is one way of visualising profile HMMs. Logos provide a quick overview of the properties of an HMM in a graphical form. You can see a more detailed description of HMM logos and find out how you can interpret them here. More...

Trees

This page displays the phylogenetic tree for this family's seed alignment. We use FastTree to calculate neighbour join trees with a local bootstrap based on 100 resamples (shown next to the tree nodes). FastTree calculates approximately-maximum-likelihood phylogenetic trees from our seed alignment.

Note: You can also download the data file for the tree.

Curation and family details

This section shows the detailed information about the Pfam family. You can see the definitions of many of the terms in this section in the glossary and a fuller explanation of the scoring system that we use in the scores section of the help pages.

Curation View help on the curation process

Seed source: Pfam-B_631 (release 2.1)
Previous IDs: none
Type: Domain
Author: Bateman A, Griffiths-Jones SR
Number in seed: 15
Number in full: 4817
Average length of the domain: 120.10 aa
Average identity of full alignment: 28 %
Average coverage of the sequence by the domain: 32.57 %

HMM information View help on HMM parameters

HMM build commands:
build method: hmmbuild -o /dev/null HMM SEED
search method: hmmsearch -Z 23193494 -E 1000 --cpu 4 HMM pfamseq
Model details:
Parameter Sequence Domain
Gathering cut-off 21.6 21.6
Trusted cut-off 21.6 21.6
Noise cut-off 21.5 21.5
Model length: 120
Family (HMM) version: 14
Download: download the raw HMM for this family

Species distribution

Sunburst controls

Show

This visualisation provides a simple graphical representation of the distribution of this family across species. You can find the original interactive tree in the adjacent tab. More...

Loading sunburst data...

Tree controls

Hide

The tree shows the occurrence of this domain across different species. More...

Loading...

Please note: for large trees this can take some time. While the tree is loading, you can safely switch away from this tab but if you browse away from the family page entirely, the tree will not be loaded.

Interactions

There are 2 interactions for this family. More...

DNA_pol3_beta_3 DNA_pol3_beta_2

Structures

For those sequences which have a structure in the Protein DataBank, we use the mapping between UniProt, PDB and Pfam coordinate systems from the PDBe group, to allow us to map Pfam domains onto UniProt sequences and three-dimensional protein structures. The table below shows the structures on which the DNA_pol3_beta domain has been found. There are 54 instances of this domain found in the PDB. Note that there may be multiple copies of the domain in a single PDB structure, since many structures contain multiple copies of the same protein seqence.

Loading structure mapping...