Please note: this site relies heavily on the use of javascript. Without a javascript-enabled browser, this site will not function correctly. Please enable javascript and reload the page, or switch to a different browser.
3  structures 369  species 0  interactions 1317  sequences 7  architectures

Family: Porin_3 (PF01459)

Summary: Eukaryotic porin

Pfam includes annotations and additional family information from a range of different sources. These sources can be accessed via the tabs below.

This is the Wikipedia entry entitled "Voltage-dependent anion channel". More...

Voltage-dependent anion channel Edit Wikipedia article

Crystal Structure of the Human Voltage-Dependent Anion Channel. The arrows denote the antiparallel beta sheets that form the characteristic beta-barrel
Eukaryotic porin
Symbol Porin_3
Pfam PF01459
InterPro IPR001925
TCDB 1.B.8
OPM superfamily 210
OPM protein 3emn
CDD cd07306

Voltage-dependent anion channels are a class of porin ion channel located on the outer mitochondrial membrane.[1] There is debate as to whether or not this channel is expressed in the cell surface membrane.[2] [3][4]

This major protein of the outer mitochondrial membrane of eukaryotes forms a voltage-dependent anion-selective channel (VDAC) that behaves as a general diffusion pore for small hydrophilic molecules.[5][6][7][8] The channel adopts an open conformation at low or zero membrane potential and a closed conformation at potentials above 30-40 mV. VDAC facilitates the exchange of ions and molecules between mitochondria and cytosol and is regulated by the interactions with other proteins and small molecules.[9]


This protein contains about 280 amino acids and forms a beta barrel which spans span the mitochondrial outer membrane.[10][11]

Since its discovery in 1976, extensive function and structure analysis of VDAC proteins has been conducted. A prominent feature of the pore emerged: when reconstituted into planar lipid bilayers, there is a voltage-dependent switch between an anion-selective high-conductance state with high metabolite flux and a cation-selective low-conductance state with limited passage of metabolites.

More than 30 years after its initial discovery, in 2008, three independent structural projects of VDAC-1 were completed. The first was solved by multi-dimensional NMR spectroscopy. The second applied a hybrid approach using crystallographic data. The third was for mouse VDAC-1 crystals determined by X-ray crystallographic techniques. The three projects of the 3D structures of VDAC-1 revealed many structural features. First, VDAC-1 represents a new structural class of outer membrane β-barrel proteins with an odd number of strands. Another aspect is that the negatively charged side chain of residue E73 is oriented towards the hydrophobic membrane environment. The 19-stranded 3D structure obtained under different experimental sources by three different laboratories fits the EM and AFM data from native membrane sources and represents a biologically relevant state of VDAC-1.[9]


At membrane potentials exceeding 30 mV (positive or negative), VDAC assumes a closed state, and transitions to its open state once the voltage drops below this threshold. Although both states allow passage of simple salts, VDAC is much more stringent with organic anions, a category into which most metabolites fall. [12] The precise mechanism for coupling voltage changes to conformational changes within the protein has not yet been worked out, but studies by Thomas et al. suggest that when the protein transitions to the closed form, voltage changes lead to the removal of a large section of the protein from the channel and decrease effective pore radius. [13] Several lysine residues, as well as Glu-152, have been implicated as especially important sensor residues within the protein. [14]

Biological Function[edit]

The voltage-dependent ion channel plays a key role in regulating metabolic and energetic flux across the outer mitochondrial membrane. It is involved in the transport of ATP, ADP, pyruvate, malate, and other metabolites, and thus communicates extensively with enzymes from metabolic pathways. [12] The ATP-dependent cytosolic enzymes hexokinase, glucokinase, and glycerol kinase, as well as the mitochondrial enzyme creatine kinase, have all been found to bind to VDAC. This binding puts them in close proximity to ATP released from the mitochondria. In particular, the binding of hexokinase is presumed to play a key role in coupling glycolysis to oxidative phosphorylation. [13] Additionally, VDAC is an important regulator of Ca2+ transport in and out of the mitochondria. Because Ca2+ is a cofactor for metabolic enzymes such as pyruvate dehydrogenase and isocitrate dehydrogenase, energetic production and homeostasis are both affected by VDAC’s permeability to Ca2+. [15]

Disease Relevance[edit]

VDAC has also been shown to play a role in apoptosis. [16] During apoptosis, increased permeability of VDAC allows for the release of apoptogenic factors such as cytochrome c. Although cyt. c plays an essential role in oxidative phosphorylation within the mitochondrion, in the cytosol it activates proteolytic enzymes called caspases, which play a major role in cell death.[17] Although the mechanism for VDAC-facilitated cyt. c release has not yet been fully elucidated, some research suggests that oligomerization between individual subunits may create a large flexible pore through which cyt. c can pass.[18]A more important factor is that release of cyt c. is also regulated by the Bcl-2 protein family: Bax interacts directly with VDAC to increase pore size and promote cyt. c release, while anti-apoptotic Bcl-xL produces the exact opposite effect.[19] In fact, it has been shown that antibodies that inhibit VDAC also interfere with Bax-mediated cyt. c release in both isolated mitchondria and whole cells.[20] This key role in apoptosis suggests VDAC as a potential target for chemotherapeutic drugs.


Yeast contains two members of this family (genes POR1 and POR2); vertebrates have at least three members (genes VDAC1, VDAC2 and VDAC3).[10]

Humans, like most higher eukaryotes, encode three different VDACs; VDAC1, VDAC2, and VDAC3. Together with TOMM40 and TOMM40L they represent a family of evolutionarily related β-barrels.[21]

Plants have the largest number of VDACs. Arabidopsis encode four different VDACs but this number can be larger in other species.[22]


  1. ^ Hoogenboom BW, Suda K, Engel A, Fotiadis D (2007). "The supramolecular assemblies of voltage-dependent anion channels in the native membrane". J. Mol. Biol. 370 (2): 246–55. doi:10.1016/j.jmb.2007.04.073. PMID 17524423. 
  2. ^ Sabirov, R. Z.; Merzlyak, P. G. (2012). "Plasmalemmal VDAC controversies and maxi-anion channel puzzle". Biochimica et Biophysica Acta (BBA) - Biomembranes 1818 (6): 1570. doi:10.1016/j.bbamem.2011.09.024.  edit
  3. ^ De Pinto, V.; Messina, A.; Lane, D. J. R.; Lawen, A. (2010). "Voltage-dependent anion-selective channel (VDAC) in the plasma membrane". FEBS Letters 584 (9): 1793–1799. doi:10.1016/j.febslet.2010.02.049. PMID 20184885.  edit
  4. ^ Niehage, C.; Steenblock, C.; Pursche, T.; Bornhäuser, M.; Corbeil, D.; Hoflack, B. (2011). "The Cell Surface Proteome of Human Mesenchymal Stromal Cells". In Borlongan, Cesario V. PLoS ONE 6 (5): e20399. doi:10.1371/journal.pone.0020399. PMC 3102717. PMID 21637820.  edit
  5. ^ Benz R (1994). "Permeation of hydrophilic solutes through mitochondrial outer membranes: review on mitochondrial porins". Biochim. Biophys. Acta 1197 (2): 167–196. doi:10.1016/0304-4157(94)90004-3. PMID 8031826. 
  6. ^ Mannella CA (1992). "The 'ins' and 'outs' of mitochondrial membrane channels". Trends Biochem. Sci. 17 (8): 315–320. doi:10.1016/0968-0004(92)90444-E. PMID 1384178. 
  7. ^ Dihanich M (1990). "The biogenesis and function of eukaryotic porins". Experientia 46 (2): 146–153. doi:10.1007/BF02027310. PMID 1689252. 
  8. ^ Forte M, Guy HR, Mannella CA (1987). "Molecular genetics of the VDAC ion channel: structural model and sequence analysis". J. Bioenerg. Biomembr. 19 (4): 341–350. doi:10.1007/BF00768537. PMID 2442148. 
  9. ^ a b Hiller S, Abramson J, Mannella C, Wagner G, Zeth K (September 2010). "The 3D structures of VDAC represent a native conformation". Trends Biochem. Sci. 35 (9): 514–21. doi:10.1016/j.tibs.2010.03.005. PMC 2933295. PMID 20708406. 
  10. ^ a b Sampson MJ, Lovell RS, Davison DB, Craigen WJ (1996). "A novel mouse mitochondrial voltage-dependent anion channel gene localizes to chromosome 8". Genomics 36 (1): 192–196. doi:10.1006/geno.1996.0445. PMID 8812436. 
  11. ^ Zeth K (2010). "Structure and evolution of mitochondrial outer membrane proteins of beta-barrel topology". Biochim. Biophys. Acta 1797 (6–7): 1292–9. doi:10.1016/j.bbabio.2010.04.019. PMID 20450883. 
  12. ^ a b Blachly-Dyson, E. and Forte, M. (2001). "VDAC Channels". IUBMB Life 52 (3-5): 113–18. doi:10.1080/15216540152845902. PMID 11798022. 
  13. ^ a b Colombini, M., Blachly-Dyson, E., Forte, M. (1996). "VDAC, a channel in the outer mitochondrial membrane". Ion Channels 4: 162–209. PMID 8744209. 
  14. ^ Colombini, M., Blachly-Dyson, E., Forte, M. (1993). "Mapping of residues forming the voltage sensor of the voltage-dependent anion-selective channel". Proc. Natl. Acad. Sci. USA 90 (12): 5446–49. doi:10.1073/pnas.90.12.5446. PMC 46737. PMID 7685903. 
  15. ^ Shoshan-Barmatz V, Gincel D. (2003). "The voltage-dependent anion channel: characterization, modulation, and role in mitochondrial function in cell life and death.". Cell Biochem. Biophys. 39 (3): 279–92. doi:10.1385/CBB:39:3:279. PMID 14716081. 
  16. ^ Lemasters JJ, Holmuhamedov E. (2006). "Voltage-dependent anion channel (VDAC) as mitochondrial governator--thinking outside the box.". Biochim. Biophys. Acta. 1762 (2): 181–90. doi:10.1016/j.bbadis.2005.10.006. PMID 16307870. 
  17. ^ Tsujimoto Y, Shimizu S. (2002). "The voltage-dependent anion channel: an essential player in apoptosis.". Biochimie 84 (2-3): 187–93. doi:10.1016/S0300-9084(02)01370-6. PMID 12022949. 
  18. ^ Zalk R, Israelson A, Garty ES, Azoulay-Zohar H, Shoshan-Barmatz V. (2005). "Oligomeric states of the voltage-dependent anion channel and cytochrome c release from mitochondria". Biochem J. 386 (1): 73–83. doi:10.1042/BJ20041356. PMID 15456403. 
  19. ^ Shimizu S, Narita M, Tsujimoto Y. (1999). "Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC". Nature 399 (6735): 483–7. doi:10.1038/20959. PMID 10365962. 
  20. ^ Shimizu S, Matsuoka Y, Shinohara Y, Yoneda Y, Tsujimoto Y. (2001). "Essential role of voltage-dependent anion channel in various forms of apoptosis in mammalian cells.". J. Cell Biol. 152 (2): 237–50. doi:10.1083/jcb.152.2.237. PMID 11266442. 
  21. ^ Bay DC, Hafez M, Young MJ, Court DA (June 2012). "Phylogenetic and coevolutionary analysis of the β-barrel protein family comprised of mitochondrial porin (VDAC) and Tom40". Biochim. Biophys. Acta 1818 (6): 1502–19. doi:10.1016/j.bbamem.2011.11.027. PMID 22178864. 
  22. ^ Homblé F, Krammer E, Prevost M (June 2012). "Plant VDAC: facts and speculations.". Biochim. Biophys. Acta 1818 (6): 1486–501. doi:10.1016/j.bbamem.2011.11.028. PMID 22155681. 

External links[edit]

This page is based on a Wikipedia article. The text is available under the Creative Commons Attribution/Share-Alike License.

This tab holds the annotation information that is stored in the Pfam database. As we move to using Wikipedia as our main source of annotation, the contents of this tab will be gradually replaced by the Wikipedia tab.

Eukaryotic porin Provide feedback

No Pfam abstract.

External database links

This tab holds annotation information from the InterPro database.

InterPro entry IPR001925

The major protein of the outer mitochondrial membrane of eukaryotes is a porin that forms a voltage-dependent anion-selective channel (VDAC) that behaves as a general diffusion pore for small hydrophilic molecules [PUBMED:8031826, PUBMED:1384178, PUBMED:1689252, PUBMED:2442148]. The channel adopts an open conformation at low or zero membrane potential and a closed conformation at potentials above 30-40 mV.

This protein contains about 280 amino acids and its sequence is composed of between 12 to 16 beta-strands that span the mitochondrial outer membrane. Yeast contains two members of this family (genes POR1 and POR2); vertebrates have at least three members (genes VDAC1, VDAC2 and VDAC3) [PUBMED:8812436].

Gene Ontology

The mapping between Pfam and Gene Ontology is provided by InterPro. If you use this data please cite InterPro.

Domain organisation

Below is a listing of the unique domain organisations or architectures in which this domain is found. More...

Loading domain graphics...


We store a range of different sequence alignments for families. As well as the seed alignment from which the family is built, we provide the full alignment, generated by searching the sequence database using the family HMM. We also generate alignments using four representative proteomes (RP) sets, the NCBI sequence database, and our metagenomics sequence database. More...

View options

We make a range of alignments for each Pfam-A family. You can see a description of each above. You can view these alignments in various ways but please note that some types of alignment are never generated while others may not be available for all families, most commonly because the alignments are too large to handle.

Representative proteomes NCBI
Jalview View  View  View  View  View  View  View  View 
HTML View  View  View  View  View  View     
PP/heatmap 1 View  View  View  View  View     
Pfam viewer View  View             

1Cannot generate PP/Heatmap alignments for seeds; no PP data available

Key: ✓ available, x not generated, not available.

Format an alignment

Representative proteomes NCBI

Download options

We make all of our alignments available in Stockholm format. You can download them here as raw, plain text files or as gzip-compressed files.

Representative proteomes NCBI
Raw Stockholm Download   Download   Download   Download   Download   Download   Download   Download  
Gzipped Download   Download   Download   Download   Download   Download   Download   Download  

You can also download a FASTA format file containing the full-length sequences for all sequences in the full alignment.

External links

MyHits provides a collection of tools to handle multiple sequence alignments. For example, one can refine a seed alignment (sequence addition or removal, re-alignment or manual edition) and then search databases for remote homologs using HMMER3.

Pfam alignments:

HMM logo

HMM logos is one way of visualising profile HMMs. Logos provide a quick overview of the properties of an HMM in a graphical form. You can see a more detailed description of HMM logos and find out how you can interpret them here. More...


This page displays the phylogenetic tree for this family's seed alignment. We use FastTree to calculate neighbour join trees with a local bootstrap based on 100 resamples (shown next to the tree nodes). FastTree calculates approximately-maximum-likelihood phylogenetic trees from our seed alignment.

Note: You can also download the data file for the tree.

Curation and family details

This section shows the detailed information about the Pfam family. You can see the definitions of many of the terms in this section in the glossary and a fuller explanation of the scoring system that we use in the scores section of the help pages.

Curation View help on the curation process

Seed source: Prodom_3211 (release 99.1) & Pfam-B__3211 (release 7.5)
Previous IDs: Euk_porin;
Type: Family
Author: Bateman A
Number in seed: 90
Number in full: 1317
Average length of the domain: 250.60 aa
Average identity of full alignment: 22 %
Average coverage of the sequence by the domain: 88.76 %

HMM information View help on HMM parameters

HMM build commands:
build method: hmmbuild -o /dev/null HMM SEED
search method: hmmsearch -Z 23193494 -E 1000 --cpu 4 HMM pfamseq
Model details:
Parameter Sequence Domain
Gathering cut-off 26.9 26.9
Trusted cut-off 26.9 27.3
Noise cut-off 26.5 26.8
Model length: 273
Family (HMM) version: 17
Download: download the raw HMM for this family

Species distribution

Sunburst controls


This visualisation provides a simple graphical representation of the distribution of this family across species. You can find the original interactive tree in the adjacent tab. More...

Loading sunburst data...

Tree controls


The tree shows the occurrence of this domain across different species. More...


Please note: for large trees this can take some time. While the tree is loading, you can safely switch away from this tab but if you browse away from the family page entirely, the tree will not be loaded.


For those sequences which have a structure in the Protein DataBank, we use the mapping between UniProt, PDB and Pfam coordinate systems from the PDBe group, to allow us to map Pfam domains onto UniProt sequences and three-dimensional protein structures. The table below shows the structures on which the Porin_3 domain has been found. There are 3 instances of this domain found in the PDB. Note that there may be multiple copies of the domain in a single PDB structure, since many structures contain multiple copies of the same protein seqence.

Loading structure mapping...