Please note: this site relies heavily on the use of javascript. Without a javascript-enabled browser, this site will not function correctly. Please enable javascript and reload the page, or switch to a different browser.
3  structures 13  species 0  interactions 34  sequences 1  architecture

Family: Enterotoxin_ST (PF02048)

Summary: Heat-stable enterotoxin ST

Pfam includes annotations and additional family information from a range of different sources. These sources can be accessed via the tabs below.

This is the Wikipedia entry entitled "Heat-stable enterotoxin". More...

Heat-stable enterotoxin Edit Wikipedia article

Heat-stable enterotoxin B, secretory
PDB 1ehs EBI.jpg
Structure of Escherichia coli heat-stable enterotoxin b.[1]
Identifiers
Symbol STb_secrete
Pfam PF09075
InterPro IPR015160
PROSITE PDOC00246
SCOP 1ehs
SUPERFAMILY 1ehs
OPM protein 1ehs
Heat-stable enterotoxin ST
PDB 1etm EBI.jpg
structural characteristics for biological activity of heat-stable enterotoxin produced by enterotoxigenic escherichia coli: x-ray crystallography of weakly toxic and nontoxic analogs
Identifiers
Symbol Enterotoxin_ST
Pfam PF02048
InterPro IPR001489
PROSITE PDOC00246
SCOP 1etn
SUPERFAMILY 1etn
Heat stable E.coli enterotoxin 1
Identifiers
Symbol Enterotoxin_HS1
Pfam PF08090
InterPro IPR012557

Heat-stable enterotoxins (STs) are secretory peptides produced by some bacterial strains, such as enterotoxigenic Escherichia coli[2] which are in general toxic to animals.

These peptides keep their 3D structure and remain active at temperatures as high as 100 °C.

Function[edit]

Different STs recognize distinct receptors on the surface of animal cells and thereby affect different intracellular signaling pathways. For example, STa enterotoxins bind and activate membrane-bound guanylate cyclase, which leads to the intracellular accumulation of cyclic GMP and downstream effects on several signaling pathways.[3][4][5][6] These events lead to the loss of electrolytes and water from intestinal cells.

Heat-stable toxin 1 of entero-aggregative Escherichia coli (EAST1) is a small toxin. It is not, however, solely associated with entero-aggregative E. coli but also with many other diarrhoeic E. coli families. Some studies have established the role of EAST1 in some human outbreaks of diarrhoea. Isolates from farm animals have been shown to carry the astA gene coding for EAST1. However, the relation between the presence of EAST1 and disease is not conclusive.[7]

Structure[edit]

The mature STa protein from Escherichia coli, which is the cause of acute diarrhoea in infants and travellers in developing countries, is a 19-residue peptide containing three disulphide bridges that are functionally important. STa contains an N-terminal signal peptide composed of two domains, Pre and Pro, involved in extracellular toxin release, and a core enterotoxigenic domain.[8]

Members of heat-stable enterotoxin B family assume a helical secondary structure, with two alpha helices forming a disulfide cross-linked alpha-helical hairpin. The disulfide bonds are crucial for the toxic activity of the protein, and are required for maintenance of the tertiary structure, and subsequent interaction with the particulate form of guanylate cyclase, increasing cyclic GMP levels within the host intestinal epithelial cells.[9]

References[edit]

  1. ^ Sukumar M, Rizo J, Wall M, Dreyfus LA, Kupersztoch YM, Gierasch LM (September 1995). "The structure of Escherichia coli heat-stable enterotoxin b by nuclear magnetic resonance and circular dichroism". Protein Sci. 4 (9): 1718–29. doi:10.1002/pro.5560040907. PMC 2143221. PMID 8528070. 
  2. ^ Ghanekar Y, Chandrashaker A, Visweswariah SS (September 2003). "Cellular refractoriness to the heat-stable enterotoxin peptide is associated with alterations in levels of the differentially glycosylated forms of guanylyl cyclase C". Eur. J. Biochem. 270 (18): 3848–57. doi:10.1046/j.1432-1033.2003.03779.x. PMID 12950269. 
  3. ^ Hasegawa M, Shimonishi Y (February 2005). "Recognition and signal transduction mechanism of Escherichia coli heat-stable enterotoxin and its receptor, guanylate cyclase C". J. Pept. Res. 65 (2): 261–71. doi:10.1111/j.1399-3011.2005.00218.x. PMID 15705168. 
  4. ^ Al-Majali AM, Asem EK, Lamar CH, Robinson JP, Freeman MJ, Saeed AM (June 2000). "Characterization of the interaction of Escherichia coli heat-stable enterotoxin (STa) with its putative receptor on the intestinal tract of newborn calves". FEMS Immunol. Med. Microbiol. 28 (2): 97–104. PMID 10799798. 
  5. ^ Al-Majali AM, Ababneh MM, Shorman M, Saeed AM (February 2007). "Interaction of Escherichia coli heat-stable enterotoxin (STa) with its putative receptor on the intestinal tract of newborn kids". FEMS Immunol. Med. Microbiol. 49 (1): 35–40. doi:10.1111/j.1574-695X.2006.00167.x. PMID 17094787. 
  6. ^ Giannella RA, Mann EA (2003). "E. coli heat-stable enterotoxin and guanylyl cyclase C: new functions and unsuspected actions". Trans. Am. Clin. Climatol. Assoc. 114: 67–85; discussion 85–6. PMC 2194511. PMID 12813912. 
  7. ^ Veilleux S, Dubreuil JD (2006). "Presence of Escherichia coli carrying the EAST1 toxin gene in farm animals". Vet. Res. 37 (1): 3–13. doi:10.1051/vetres:2005045. PMID 16336921. 
  8. ^ Sato T, Shimonishi Y (March 2004). "Structural features of Escherichia coli heat-stable enterotoxin that activates membrane-associated guanylyl cyclase". J. Pept. Res. 63 (3): 200–6. doi:10.1111/j.1399-3011.2004.00125.x. PMID 15049831. 
  9. ^ Rizo J, Gierasch LM, Sukumar M, Wall M, Dreyfus LA, Kupersztoch YM (1995). "The structure of Escherichia coli heat-stable enterotoxin b by nuclear magnetic resonance and circular dichroism". Protein Sci. 4 (9): –. doi:10.1002/pro.5560040907. PMC 2143221. PMID 8528070. 

This article incorporates text from the public domain Pfam and InterPro IPR001489

This article incorporates text from the public domain Pfam and InterPro IPR015160

This article incorporates text from the public domain Pfam and InterPro IPR012557


This page is based on a Wikipedia article. The text is available under the Creative Commons Attribution/Share-Alike License.

This tab holds the annotation information that is stored in the Pfam database. As we move to using Wikipedia as our main source of annotation, the contents of this tab will be gradually replaced by the Wikipedia tab.

Heat-stable enterotoxin ST Provide feedback

This family consists of the heat stable enterotoxin ST from Escherichia coli. ST is a small peptide of 18 or 19 amino acid residues produced by enterotoxigenic E. coli and is one of the causes of acute diarrhoea in infants and travellers in developing countries. ST triggers a biological response by binding to a membrane-associated guanylyl cyclase C which is located on intestinal epithelial cell membranes [1].

Literature references

  1. Sato T, Shimonishi Y; , J Pept Res 2004;63:200-206.: Structural features of Escherichia coli heat-stable enterotoxin that activates membrane-associated guanylyl cyclase. PUBMED:15049831 EPMC:15049831


External database links

This tab holds annotation information from the InterPro database.

InterPro entry IPR001489

This entry represents a group of heat-stable enterotoxins, such as STa from Escherichia coli, which is the cause of acute diarrhoea in infants and travellers in developing countries. The mature STa protein is a 19-residue peptide containing three disulphide bridges that are functionally important. STa contains an N-terminal signal peptide composed of two domains, Pre and Pro, involved in extracellular toxin release, and a core enterotoxigenic domain [PUBMED:15049831]. STa binds to and activates the guanylate cyclise C intestinal receptor, causing an increase in the intracellular levels of cyclic guanosine monophosphate (cGMP) [PUBMED:10799798, PUBMED:17094787, PUBMED:12813912].

Gene Ontology

The mapping between Pfam and Gene Ontology is provided by InterPro. If you use this data please cite InterPro.

Domain organisation

Below is a listing of the unique domain organisations or architectures in which this domain is found. More...

Loading domain graphics...

Alignments

We store a range of different sequence alignments for families. As well as the seed alignment from which the family is built, we provide the full alignment, generated by searching the sequence database using the family HMM. We also generate alignments using four representative proteomes (RP) sets, the NCBI sequence database, and our metagenomics sequence database. More...

View options

We make a range of alignments for each Pfam-A family. You can see a description of each above. You can view these alignments in various ways but please note that some types of alignment are never generated while others may not be available for all families, most commonly because the alignments are too large to handle.

  Seed
(6)
Full
(34)
Representative proteomes NCBI
(35)
Meta
(0)
RP15
(0)
RP35
(0)
RP55
(0)
RP75
(0)
Jalview View  View          View   
HTML View  View             
PP/heatmap 1 View             
Pfam viewer View  View             

1Cannot generate PP/Heatmap alignments for seeds; no PP data available

Key: ✓ available, x not generated, not available.

Format an alignment

  Seed
(6)
Full
(34)
Representative proteomes NCBI
(35)
Meta
(0)
RP15
(0)
RP35
(0)
RP55
(0)
RP75
(0)
Alignment:
Format:
Order:
Sequence:
Gaps:
Download/view:

Download options

We make all of our alignments available in Stockholm format. You can download them here as raw, plain text files or as gzip-compressed files.

  Seed
(6)
Full
(34)
Representative proteomes NCBI
(35)
Meta
(0)
RP15
(0)
RP35
(0)
RP55
(0)
RP75
(0)
Raw Stockholm Download   Download           Download    
Gzipped Download   Download           Download    

You can also download a FASTA format file containing the full-length sequences for all sequences in the full alignment.

External links

MyHits provides a collection of tools to handle multiple sequence alignments. For example, one can refine a seed alignment (sequence addition or removal, re-alignment or manual edition) and then search databases for remote homologs using HMMER3.

Pfam alignments:

HMM logo

HMM logos is one way of visualising profile HMMs. Logos provide a quick overview of the properties of an HMM in a graphical form. You can see a more detailed description of HMM logos and find out how you can interpret them here. More...

Trees

This page displays the phylogenetic tree for this family's seed alignment. We use FastTree to calculate neighbour join trees with a local bootstrap based on 100 resamples (shown next to the tree nodes). FastTree calculates approximately-maximum-likelihood phylogenetic trees from our seed alignment.

Note: You can also download the data file for the tree.

Curation and family details

This section shows the detailed information about the Pfam family. You can see the definitions of many of the terms in this section in the glossary and a fuller explanation of the scoring system that we use in the scores section of the help pages.

Curation View help on the curation process

Seed source: IPR001489
Previous IDs: Enterotoxin_HS;
Type: Family
Author: Mian N, Bateman A
Number in seed: 6
Number in full: 34
Average length of the domain: 45.90 aa
Average identity of full alignment: 57 %
Average coverage of the sequence by the domain: 76.04 %

HMM information View help on HMM parameters

HMM build commands:
build method: hmmbuild -o /dev/null HMM SEED
search method: hmmsearch -Z 23193494 -E 1000 --cpu 4 HMM pfamseq
Model details:
Parameter Sequence Domain
Gathering cut-off 21.1 21.1
Trusted cut-off 23.1 22.7
Noise cut-off 19.9 19.3
Model length: 54
Family (HMM) version: 11
Download: download the raw HMM for this family

Species distribution

Sunburst controls

Show

This visualisation provides a simple graphical representation of the distribution of this family across species. You can find the original interactive tree in the adjacent tab. More...

Loading sunburst data...

Tree controls

Hide

The tree shows the occurrence of this domain across different species. More...

Loading...

Please note: for large trees this can take some time. While the tree is loading, you can safely switch away from this tab but if you browse away from the family page entirely, the tree will not be loaded.

Structures

For those sequences which have a structure in the Protein DataBank, we use the mapping between UniProt, PDB and Pfam coordinate systems from the PDBe group, to allow us to map Pfam domains onto UniProt sequences and three-dimensional protein structures. The table below shows the structures on which the Enterotoxin_ST domain has been found. There are 3 instances of this domain found in the PDB. Note that there may be multiple copies of the domain in a single PDB structure, since many structures contain multiple copies of the same protein seqence.

Loading structure mapping...