Please note: this site relies heavily on the use of javascript. Without a javascript-enabled browser, this site will not function correctly. Please enable javascript and reload the page, or switch to a different browser.
7  structures 119  species 0  interactions 1063  sequences 41  architectures

Family: DCX (PF03607)

Summary: Doublecortin

Pfam includes annotations and additional family information from a range of different sources. These sources can be accessed via the tabs below.

This is the Wikipedia entry entitled "Doublecortin". More...

Doublecortin Edit Wikipedia article

Doublecortin

PDB rendering based on 1mjd.
Available structures
PDB Ortholog search: PDBe, RCSB
Identifiers
Symbols DCX; DBCN; DC; LISX; SCLH; XLIS
External IDs OMIM300121 MGI1277171 HomoloGene7683 GeneCards: DCX Gene
RNA expression pattern
PBB GE DCX 204850 s at tn.png
PBB GE DCX 204851 s at tn.png
More reference expression data
Orthologs
Species Human Mouse
Entrez 1641 13193
Ensembl ENSG00000077279 ENSMUSG00000031285
UniProt O43602 O88809
RefSeq (mRNA) NM_000555 NM_001110222
RefSeq (protein) NP_000546 NP_001103692
Location (UCSC) Chr X:
110.54 – 110.66 Mb
Chr X:
143.86 – 143.93 Mb
PubMed search [1] [2]

Neuronal migration protein doublecortin, also known as doublin or lissencephalin-X is a protein that in humans is encoded by the DCX gene.[1]

Function[edit]

Doublecortin expression in the rat dentate gyrus, 21st postnatal day. Oomen et al., 2009.[2]

Doublecortin (DCX) is a microtubule-associated protein expressed by neuronal precursor cells and immature neurons in embryonic and adult cortical structures. Neuronal precursor cells begin to express DCX while actively dividing, and their neuronal daughter cells continue to express DCX for 2–3 weeks as the cells mature into neurons. Downregulation of DCX begins after 2 weeks, and occurs at the same time that these cells begin to express, NeuN, a marker for mature neurons.[3]

Due to the nearly exclusive expression of DCX in developing neurons, this protein has been used increasingly as a marker for neurogenesis. Indeed, the levels of DCX expression increase in response to exercise,[4] which occurs in parallel with increased BrdU labelling, currently a "gold standard" in measuring neurogenesis.

Doublecortin was found to bind to the microtubule cytoskeleton. In vivo and in vitro assays show that Doublecortin stabilises microtubules and causes bundling.[5] Doublecortin is a basic protein with an iso-electric point of 10, typical of microtubule-binding proteins.

Structure[edit]

Doublecortin
PDB 1uf0 EBI.jpg
solution structure of the n-terminal dcx domain of human doublecortin-like kinase
Identifiers
Symbol DCX
Pfam PF03607
InterPro IPR003533
SCOP 1mfw
SUPERFAMILY 1mfw

The detailed sequence analysis of Doublecortin and Doublecortin-like proteins allowed the identification of an tandem repeat of evolutionarily conserved Doublecortin (DC) domains. These domains are found in the N terminus of proteins and consists of tandemly repeated copies of an around 80 amino acids region. It has been suggested that the first DC domain of Doublecortin binds tubulin and enhances microtubule polymerisation.[6]

Doublecortin has been shown to influence the structure of microtubules. Microtubule nucleated in vitro in the presence of Doublecortin have almost exclusively 13 protofilaments, whereas microtubule nucleated without Doublecortin are present in a range of different sizes.

Interactions[edit]

Doublecortin has been shown to interact with PAFAH1B1.[7]

Clinical significance[edit]

Doublecortin is mutated in humans in the syndrome X-linked lissencephaly and double cortex, X-linked lissencephaly means that the disorder produce a smooth brain because of lack of migration of immature neurons, without the normal folds of the brain surface. In the case of double cortex the disease is characterized by abnormal migration during development that results in two bands of misplaced neurons in the subcortical white matter that generate two cortex, giving the name to the syndrome,[8] clinically patients with X-linked lissencephaly, the majority of times are males with a mutation in the their X chromosome. In the case of double cortex the majority of the patients are females with a mutation in one of the X-chromosome, they presents intractable seizures and mental retardation. The severity of the disease can be implied by a gene dosage effect, meaning that in the case of males, with only one X chromosome, there is no protein, however in the case of females with two X chromosome, the mutation in one X chromosome can somehow be compensated, however not enough functional protein is produced in the double cortex patients. The mutation was discovered by Joseph Gleeson and Christopher A. Walsh in Boston.[9][10]

See also[edit]

References[edit]

  1. ^ EntrezGene 1641
  2. ^ Oomen CA, Girardi CE, Cahyadi R, Verbeek EC, Krugers H, Joëls M, Lucassen PJ (2009). "Opposite effects of early maternal deprivation on neurogenesis in male versus female rats". PLoS ONE 4 (1): e3675. doi:10.1371/journal.pone.0003675. PMC 2629844. PMID 19180242. 
  3. ^ Brown JP, Couillard-Després S, Cooper-Kuhn CM, Winkler J, Aigner L, Kuhn HG (December 2003). "Transient expression of doublecortin during adult neurogenesis". J. Comp. Neurol. 467 (1): 1–10. doi:10.1002/cne.10874. PMID 14574675. 
  4. ^ Couillard-Despres S, Winner B, Schaubeck S, Aigner R, Vroemen M, Weidner N, Bogdahn U, Winkler J, Kuhn HG, Aigner L (January 2005). "Doublecortin expression levels in adult brain reflect neurogenesis". Eur. J. Neurosci. 21 (1): 1–14. doi:10.1111/j.1460-9568.2004.03813.x. PMID 15654838. 
  5. ^ Horesh D, Sapir T, Francis F, Wolf SG, Caspi M, Elbaum M, Chelly J, Reiner O (September 1999). "Doublecortin, a stabilizer of microtubules". Hum. Mol. Genet. 8 (9): 1599–610. doi:10.1093/hmg/8.9.1599. PMID 10441322. 
  6. ^ Sapir T, Horesh D, Caspi M, Atlas R, Burgess HA, Wolf SG, Francis F, Chelly J, Elbaum M, Pietrokovski S, Reiner O (March 2000). "Doublecortin mutations cluster in evolutionarily conserved functional domains". Hum. Mol. Genet. 9 (5): 703–12. doi:10.1093/hmg/9.5.703. PMID 10749977. 
  7. ^ Caspi M, Atlas R, Kantor A, Sapir T, Reiner O (September 2000). "Interaction between LIS1 and doublecortin, two lissencephaly gene products". Hum. Mol. Genet. 9 (15): 2205–13. doi:10.1093/oxfordjournals.hmg.a018911. PMID 11001923. 
  8. ^ Online 'Mendelian Inheritance in Man' (OMIM) Doublecortin -300121
  9. ^ Gleeson JG, Allen KM, Fox JW, Lamperti ED, Berkovic S, Scheffer I, Cooper EC, Dobyns WB, Minnerath SR, Ross ME, Walsh CA (January 1998). "Doublecortin, a brain-specific gene mutated in human X-linked lissencephaly and double cortex syndrome, encodes a putative signaling protein". Cell 92 (1): 63–72. doi:10.1016/S0092-8674(00)80899-5. PMID 9489700. 
  10. ^ Lowenstein DH (2011). "Seizures and Epilepsy". In Loscalzo J, Longo DL, Fauci AS, Kasper DL, Hauser SL. Harrison's Principles of Internal Medicine (18th ed.). McGraw-Hill Professional. pp. 3251–3269. ISBN 0-07-174889-X. 

Further reading[edit]

  • des Portes V, Pinard JM, Smadja D, et al. (1997). "Dominant X linked subcortical laminar heterotopia and lissencephaly syndrome (XSCLH/LIS): evidence for the occurrence of mutation in males and mapping of a potential locus in Xq22.". J. Med. Genet. 34 (3): 177–83. doi:10.1136/jmg.34.3.177. PMC 1050888. PMID 9132485. 
  • des Portes V, Pinard JM, Billuart P, et al. (1998). "A novel CNS gene required for neuronal migration and involved in X-linked subcortical laminar heterotopia and lissencephaly syndrome.". Cell 92 (1): 51–61. doi:10.1016/S0092-8674(00)80898-3. PMID 9489699. 
  • Gleeson JG, Allen KM, Fox JW, et al. (1998). "Doublecortin, a brain-specific gene mutated in human X-linked lissencephaly and double cortex syndrome, encodes a putative signaling protein.". Cell 92 (1): 63–72. doi:10.1016/S0092-8674(00)80899-5. PMID 9489700. 
  • des Portes V, Francis F, Pinard JM, et al. (1999). "doublecortin is the major gene causing X-linked subcortical laminar heterotopia (SCLH).". Hum. Mol. Genet. 7 (7): 1063–70. doi:10.1093/hmg/7.7.1063. PMID 9618162. 
  • Sossey-Alaoui K, Hartung AJ, Guerrini R, et al. (1998). "Human doublecortin (DCX) and the homologous gene in mouse encode a putative Ca2+-dependent signaling protein which is mutated in human X-linked neuronal migration defects.". Hum. Mol. Genet. 7 (8): 1327–32. doi:10.1093/hmg/7.8.1327. PMID 9668176. 
  • Pilz DT, Matsumoto N, Minnerath S, et al. (1999). "LIS1 and XLIS (DCX) mutations cause most classical lissencephaly, but different patterns of malformation.". Hum. Mol. Genet. 7 (13): 2029–37. doi:10.1093/hmg/7.13.2029. PMID 9817918. 
  • Gleeson JG, Minnerath SR, Fox JW, et al. (1999). "Characterization of mutations in the gene doublecortin in patients with double cortex syndrome.". Ann. Neurol. 45 (2): 146–53. doi:10.1002/1531-8249(199902)45:2<146::AID-ANA3>3.0.CO;2-N. PMID 9989615. 
  • Kato M, Kimura T, Lin C, et al. (1999). "A novel mutation of the doublecortin gene in Japanese patients with X-linked lissencephaly and subcortical band heterotopia.". Hum. Genet. 104 (4): 341–4. doi:10.1007/s004390050963. PMID 10369164. 
  • Gleeson JG, Lin PT, Flanagan LA, Walsh CA (1999). "Doublecortin is a microtubule-associated protein and is expressed widely by migrating neurons.". Neuron 23 (2): 257–71. doi:10.1016/S0896-6273(00)80778-3. PMID 10399933. 
  • Pilz DT, Kuc J, Matsumoto N, et al. (2000). "Subcortical band heterotopia in rare affected males can be caused by missense mutations in DCX (XLIS) or LIS1.". Hum. Mol. Genet. 8 (9): 1757–60. doi:10.1093/hmg/8.9.1757. PMID 10441340. 
  • Sakamoto M, Ono J, Okada S, et al. (2000). "Genetic alteration of the DCX gene in Japanese patients with subcortical laminar heterotopia or isolated lissencephaly sequence.". J. Hum. Genet. 45 (3): 167–70. doi:10.1007/s100380050204. PMID 10807542. 
  • Caspi M, Atlas R, Kantor A, et al. (2001). "Interaction between LIS1 and doublecortin, two lissencephaly gene products.". Hum. Mol. Genet. 9 (15): 2205–13. doi:10.1093/oxfordjournals.hmg.a018911. PMID 11001923. 
  • Matsumoto N, Leventer RJ, Kuc JA, et al. (2001). "Mutation analysis of the DCX gene and genotype/phenotype correlation in subcortical band heterotopia.". Eur. J. Hum. Genet. 9 (1): 5–12. doi:10.1038/sj.ejhg.5200548. PMID 11175293. 
  • Demelas L, Serra G, Conti M, et al. (2001). "Incomplete penetrance with normal MRI in a woman with germline mutation of the DCX gene.". Neurology 57 (2): 327–30. PMID 11468322. 
  • Friocourt G, Chafey P, Billuart P, et al. (2001). "Doublecortin interacts with mu subunits of clathrin adaptor complexes in the developing nervous system.". Mol. Cell. Neurosci. 18 (3): 307–19. doi:10.1006/mcne.2001.1022. PMID 11591131. 
  • Kato M, Kanai M, Soma O, et al. (2001). "Mutation of the doublecortin gene in male patients with double cortex syndrome: somatic mosaicism detected by hair root analysis.". Ann. Neurol. 50 (4): 547–51. doi:10.1002/ana.1231. PMID 11601509. 
  • des Portes V, Abaoub L, Joannard A, et al. (2002). "So-called 'cryptogenic' partial seizures resulting from a subtle cortical dysgenesis due to a doublecortin gene mutation.". Seizure : the journal of the British Epilepsy Association 11 (4): 273–7. doi:10.1053/seiz.2001.0607. PMID 12027577. 
  • Kizhatil K, Wu YX, Sen A, Bennett V (2002). "A new activity of doublecortin in recognition of the phospho-FIGQY tyrosine in the cytoplasmic domain of neurofascin.". J. Neurosci. 22 (18): 7948–58. PMID 12223548. 
  • D'Agostino MD, Bernasconi A, Das S, et al. (2002). "Subcortical band heterotopia (SBH) in males: clinical, imaging and genetic findings in comparison with females.". Brain 125 (Pt 11): 2507–22. doi:10.1093/brain/awf248. PMID 12390976. 
  • Meyer G, Perez-Garcia CG, Gleeson JG (2003). "Selective expression of doublecortin and LIS1 in developing human cortex suggests unique modes of neuronal movement.". Cereb. Cortex 12 (12): 1225–36. doi:10.1093/cercor/12.12.1225. PMID 12427674. 

External links[edit]


This article incorporates text from the public domain Pfam and InterPro IPR003533

This page is based on a Wikipedia article. The text is available under the Creative Commons Attribution/Share-Alike License.

This tab holds the annotation information that is stored in the Pfam database. As we move to using Wikipedia as our main source of annotation, the contents of this tab will be gradually replaced by the Wikipedia tab.

Doublecortin Provide feedback

No Pfam abstract.

External database links

This tab holds annotation information from the InterPro database.

InterPro entry IPR003533

X-linked lissencephaly is a severe brain malformation affecting males. Recently it has been demonstrated that the doublecortin gene is implicated in this disorder [PUBMED:9489699]. Doublecortin was found to bind to the microtubule cytoskeleton. In vivo and in vitro assays show that Doublecortin stabilises microtubules and causes bundling [PUBMED:10441322]. Doublecortin is a basic protein with an iso-electric point of 10, typical of microtubule-binding proteins. However, its sequence contains no known microtubule-binding domain(s).

The detailed sequence analysis of Doublecortin and Doublecortin-like proteins allowed the identification of an evolutionarily conserved Doublecortin (DC) domain. This domain is found in the N terminus of proteins and consists of one or two tandemly repeated copies of an around 80 amino acids region. It has been suggested that the first DC domain of Doublecortin binds tubulin and enhances microtubule polymerisation [PUBMED:10749977].

Some proteins known to contain a DC domain are listed below:

  • Doublecortin. It is required for neuronal migration [PUBMED:9489699]. A large number of point mutations in the human DCX gene leading to lissencephaly are located within the DC domains [PUBMED:10749977].
  • Human serine/threonine-protein kinase DCAMKL1. It is a probable kinase that may be involved in a calcium-signaling pathway controling neuronal migration in the developing brain [PUBMED:10533048].
  • Retinitis pigmentosa 1 protein. It could play a role in the differentiation of photoreceptor cells. Mutation in the human RP1 gene cause retinitis pigmentosa of type 1 [PUBMED:10401003].

Gene Ontology

The mapping between Pfam and Gene Ontology is provided by InterPro. If you use this data please cite InterPro.

Domain organisation

Below is a listing of the unique domain organisations or architectures in which this domain is found. More...

Loading domain graphics...

Alignments

We store a range of different sequence alignments for families. As well as the seed alignment from which the family is built, we provide the full alignment, generated by searching the sequence database using the family HMM. We also generate alignments using four representative proteomes (RP) sets, the NCBI sequence database, and our metagenomics sequence database. More...

View options

We make a range of alignments for each Pfam-A family. You can see a description of each above. You can view these alignments in various ways but please note that some types of alignment are never generated while others may not be available for all families, most commonly because the alignments are too large to handle.

  Seed
(53)
Full
(1063)
Representative proteomes NCBI
(931)
Meta
(2)
RP15
(142)
RP35
(196)
RP55
(349)
RP75
(602)
Jalview View  View  View  View  View  View  View  View 
HTML View  View  View  View  View  View     
PP/heatmap 1 View  View  View  View  View     
Pfam viewer View  View             

1Cannot generate PP/Heatmap alignments for seeds; no PP data available

Key: ✓ available, x not generated, not available.

Format an alignment

  Seed
(53)
Full
(1063)
Representative proteomes NCBI
(931)
Meta
(2)
RP15
(142)
RP35
(196)
RP55
(349)
RP75
(602)
Alignment:
Format:
Order:
Sequence:
Gaps:
Download/view:

Download options

We make all of our alignments available in Stockholm format. You can download them here as raw, plain text files or as gzip-compressed files.

  Seed
(53)
Full
(1063)
Representative proteomes NCBI
(931)
Meta
(2)
RP15
(142)
RP35
(196)
RP55
(349)
RP75
(602)
Raw Stockholm Download   Download   Download   Download   Download   Download   Download   Download  
Gzipped Download   Download   Download   Download   Download   Download   Download   Download  

You can also download a FASTA format file containing the full-length sequences for all sequences in the full alignment.

External links

MyHits provides a collection of tools to handle multiple sequence alignments. For example, one can refine a seed alignment (sequence addition or removal, re-alignment or manual edition) and then search databases for remote homologs using HMMER3.

Pfam alignments:

HMM logo

HMM logos is one way of visualising profile HMMs. Logos provide a quick overview of the properties of an HMM in a graphical form. You can see a more detailed description of HMM logos and find out how you can interpret them here. More...

Trees

This page displays the phylogenetic tree for this family's seed alignment. We use FastTree to calculate neighbour join trees with a local bootstrap based on 100 resamples (shown next to the tree nodes). FastTree calculates approximately-maximum-likelihood phylogenetic trees from our seed alignment.

Note: You can also download the data file for the tree.

Curation and family details

This section shows the detailed information about the Pfam family. You can see the definitions of many of the terms in this section in the glossary and a fuller explanation of the scoring system that we use in the scores section of the help pages.

Curation View help on the curation process

Seed source: PROSITE
Previous IDs: none
Type: Family
Author: Griffiths-Jones SR
Number in seed: 53
Number in full: 1063
Average length of the domain: 60.20 aa
Average identity of full alignment: 32 %
Average coverage of the sequence by the domain: 14.44 %

HMM information View help on HMM parameters

HMM build commands:
build method: hmmbuild -o /dev/null HMM SEED
search method: hmmsearch -Z 23193494 -E 1000 --cpu 4 HMM pfamseq
Model details:
Parameter Sequence Domain
Gathering cut-off 21.4 21.4
Trusted cut-off 22.1 21.4
Noise cut-off 21.3 21.3
Model length: 60
Family (HMM) version: 12
Download: download the raw HMM for this family

Species distribution

Sunburst controls

Show

This visualisation provides a simple graphical representation of the distribution of this family across species. You can find the original interactive tree in the adjacent tab. More...

Loading sunburst data...

Tree controls

Hide

The tree shows the occurrence of this domain across different species. More...

Loading...

Please note: for large trees this can take some time. While the tree is loading, you can safely switch away from this tab but if you browse away from the family page entirely, the tree will not be loaded.

Structures

For those sequences which have a structure in the Protein DataBank, we use the mapping between UniProt, PDB and Pfam coordinate systems from the PDBe group, to allow us to map Pfam domains onto UniProt sequences and three-dimensional protein structures. The table below shows the structures on which the DCX domain has been found. There are 7 instances of this domain found in the PDB. Note that there may be multiple copies of the domain in a single PDB structure, since many structures contain multiple copies of the same protein seqence.

Loading structure mapping...