Please note: this site relies heavily on the use of javascript. Without a javascript-enabled browser, this site will not function correctly. Please enable javascript and reload the page, or switch to a different browser.
0  structures 232  species 0  interactions 269  sequences 6  architectures

Family: Tom22 (PF04281)

Summary: Mitochondrial import receptor subunit Tom22

Pfam includes annotations and additional family information from a range of different sources. These sources can be accessed via the tabs below.

This is the Wikipedia entry entitled "Translocase of the outer membrane". More...

Translocase of the outer membrane Edit Wikipedia article

Mitochondrial import receptor subunit TOM20
PBB Protein TOMM20 image.jpg
Identifiers
Symbol TOM20_plant
Pfam PF06552
InterPro IPR010547
TCDB 3.A.8
OPM superfamily 303
OPM protein 3awr
TOM7 family
Identifiers
Symbol Tom7
Pfam PF08038
InterPro IPR012621
Mitochondrial import receptor subunit Tom22
Identifiers
Symbol Tom22
Pfam PF04281
InterPro IPR005683
TCDB 3.A.8

The translocase of the outer membrane (TOM) is a complex of proteins found in the outer mitochondrial membrane of the mitochondria. Its function is to allow movement of proteins through this barrier and into the intermembrane space of the mitochondrion. Most of the proteins needed for mitochondrial function are encoded by the nucleus of the cell. The outer membrane of the mitochondrion is impermeable to large molecules greater than 5000 Daltons.[1] The TOM works in conjunction with the translocase of the inner membrane (TIM) to translocate proteins into the mitochondrion. Many of the proteins in the TOM complex, such as TOMM22, were first identified in Neurospora crassa and Saccharomyces cerevisiae.[2]

The complete mitochondrial protein translocase complex includes at least 19 proteins: several chaperones, four proteins of the outer membrane translocase (Tom) import receptor, five proteins of the Tom channel complex, five proteins of the inner membrane translocase (Tim) and three "motor" proteins.

Protein targeting to the mitochondria[edit]

There are various mitochondrial import pathways that exist to facilitate the import of precursor proteins to their destined mitochondrial subcompartments. HSP90 aids the delivery of the mitochondrial preprotein to the TOM complex in an ATP-dependent process.[3] Many precursor proteins (those that are destined for the matrix) contain amino-terminal presequences that carry information required for the targeting of proteins to the mitochondrial matrix[4] These matrix targeting signals generally contain 10-80 amino acid residues that take on the conformation of an amphipathic-α helix[5] and contain one positive and hydrophobic face. Once the precursor reaches the matrix, the presequence is typically cleaved off by the matrix processing peptidase.[6] Proteins targeted to other sub-compartments of the mitochondria such as the intermembrane space and inner mitochondrial membrane, contain internal targeting signals, these signals have an indefinable nature and are inconsistent in their pattern. Proteins targeted to the outer membrane also contain internal targeting signals, not all of which have been identified, and include proteins that take on a β-barrel structure,[7] such as Tom40. Some proteins however, that are targeted to the outer mitochondrial membrane contain a hydrophobic tail domain that anchors the protein to the membrane.[8]

Members of the complex[edit]

The translocase of the outer membrane (TOM) forms a complex made of Tom70, Tom22, and Tom20, along with Tom40, Tom7, Tom6, and Tom5. Tom20 and Tom22 are preprotein receptors, which are responsible for recognition of the cleavable presequence possessed by mitochondrial-targeted proteins.[9] Tom70 is also a preprotein receptor and may recognise some cleavable presequence proteins, however it is mainly responsible for the recognition of non-cleavable preproteins and acts as a point for chaperone binding.[6][10] Tom22 is anchored to the outer membrane by a single transmembrane segment and also plays a role in stabilizing the TOM complex.[11] Tom40 is the core element of the translocase complex and complexes with Tom22 with a mass of approximately 350k Daltons.[12] It forms the central protein-conducting channel with a diameter of approximately 2.5 nm.[12] The human Tom22 is approximately 15.5k Daltons and complexes with Tom20.[13] The N-terminal end of Tom22 extends into the cytosol and is involved in preprotein binding.[13]

Human proteins[edit]

TOMM22, TOMM40, TOM7, TOMM7

References[edit]

  1. ^ Alberts, Bruce; Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, Peter Walter (1994). Molecular Biology of the Cell. New York: Garland Publishing Inc. ISBN 0-8153-3218-1. 
  2. ^ Seki N, Moczko M, Nagase T, et al. (1996). "A human homolog of the mitochondrial protein import receptor Mom19 can assemble with the yeast mitochondrial receptor complex". FEBS Lett. 375 (3): 307–10. doi:10.1016/0014-5793(95)01229-8. PMID 7498524. 
  3. ^ Humphries AD, Streimann IC, Stojanovski D, Johnston AJ, Yano M, Hoogenraad NJ, Ryan MT (March 2005). "Dissection of the mitochondrial import and assembly pathway for human Tom40". J Biol Chem. 280 (12): 11535–43. doi:10.1074/jbc.M413816200. PMID 15644312. 
  4. ^ Saitoh T, Igura M, Obita T, Ose T, Kojima R, Maenaka K, Endo T, Kohda D (November 2007). "Tom20 recognizes mitochondrial presequences through dynamic equilibrium among multiple bound states". EMBO J. 26 (22): 4777–87. doi:10.1038/sj.emboj.7601888. PMC 2080804. PMID 17948058. 
  5. ^ Tokatlidis K, Vial S, Luciano P, Vergnolle M, Clémence S (2000). "Membrane protein import in yeast mitochondria". Biochem. Soc. Trans. 28 (4): 495–9. doi:10.1042/0300-5127:0280495. PMID 10961947. 
  6. ^ a b Young JC, Hoogenraad NJ, Hartl FU (January 2003). "Molecular chaperones Hsp90 and Hsp70 deliver preproteins to the mitochondrial import receptor Tom70". Cell 112 (1): 41–50. doi:10.1016/S0092-8674(02)01250-3. PMID 12526792. 
  7. ^ Bolender N, Sickmann A, Wagner R, Meisinger C, Pfanner N (January 2008). "Multiple pathways for sorting mitochondrial precursor proteins". EMBO Rep. 9 (1): 42–9. doi:10.1038/sj.embor.7401126. PMC 2246611. PMID 18174896. 
  8. ^ Koehler CM, Merchant S, Schatz G (November 1999). "How membrane proteins travel across the mitochondrial intermembrane space". Trends Biochem. Sci. 24 (11): 428–32. doi:10.1016/S0968-0004(99)01462-0. PMID 10542408. 
  9. ^ Ryan MT, Müller H, Pfanner N (July 1999). "Functional staging of ADP/ATP carrier translocation across the outer mitochondrial membrane". J. Biol. Chem. 274 (29): 20619–27. doi:10.1074/jbc.274.29.20619. PMID 10400693. 
  10. ^ Asai T, Takahashi T, Esaki M, Nishikawa S, Ohtsuka K, Nakai M, Endo T (May 2004). "Reinvestigation of the requirement of cytosolic ATP for mitochondrial protein import". J. Biol. Chem. 279 (19): 19464–70. doi:10.1074/jbc.M401291200. PMID 15001571. 
  11. ^ Endres M, Neupert W, Brunner M (June 1999). "Transport of the ADP/ATP carrier of mitochondria from the TOM complex to the TIM22.54 complex". EMBO J. 18 (12): 3214–21. doi:10.1093/emboj/18.12.3214. PMC 1171402. PMID 10369662. 
  12. ^ a b Ahting U, Thieffry M, Engelhardt H, Hegerl R, Neupert W, Nussberger S (2001). "Tom40, the Pore-Forming Component of the Protein-Conducting Tom Channel in the Outer Membrane of Mitochondria". J. Cell Biol. 153 (6): 1151–60. doi:10.1083/jcb.153.6.1151. PMC 2192023. PMID 11402060. 
  13. ^ a b Yano M, Hoogenraad N, Terada K, Mori M (2000). "Identification and Functional Analysis of Human Tom22 for Protein Import into Mitochondria". Mol Cell Biol. 20 (19): 7205–13. doi:10.1128/MCB.20.19.7205-7213.2000. PMC 86274. PMID 10982837. 

See also[edit]

This page is based on a Wikipedia article. The text is available under the Creative Commons Attribution/Share-Alike License.

This tab holds the annotation information that is stored in the Pfam database. As we move to using Wikipedia as our main source of annotation, the contents of this tab will be gradually replaced by the Wikipedia tab.

Mitochondrial import receptor subunit Tom22 Provide feedback

The mitochondrial protein translocase family, which is responsible for movement of nuclear encoded pre-proteins into mitochondria, is very complex with at least 19 components. These proteins include several chaperone proteins, four proteins of the outer membrane translocase (Tom) import receptor, five proteins of the Tom channel complex, five proteins of the inner membrane translocase (Tim) and three "motor" proteins. This family represents the Tom22 proteins [1]. The N terminal region of Tom22 has been shown to have chaperone-like activity, and the C terminal region faces the intermembrane face [2].

Literature references

  1. Model K, Prinz T, Ruiz T, Radermacher M, Krimmer T, Kuhlbrandt W, Pfanner N, Meisinger C; , J Mol Biol 2002;316:657-666.: Protein translocase of the outer mitochondrial membrane: role of import receptors in the structural organization of the TOM complex. PUBMED:11866524 EPMC:11866524

  2. Yano M, Terada K, Mori M; , J Biol Chem. 2004;279:10808-10813.: Mitochondrial import receptors Tom20 and Tom22 have chaperone-like activity. PUBMED:14699115 EPMC:14699115


External database links

This tab holds annotation information from the InterPro database.

InterPro entry IPR005683

The mitochondrial protein translocase family, which is responsible for movement of nuclear encoded pre-proteins into mitochondria, is very complex with at least 19 components. These proteins include several chaperone proteins, four proteins of the outer membrane translocase (Tom) import receptor, five proteins of the Tom channel complex, five proteins of the inner membrane translocase (Tim) and three "motor" proteins. This family represents the Tom22 proteins [PUBMED:11866524]. The N-terminal region of Tom22 has been shown to have chaperone-like activity, and the C-terminal region faces the intermembrane face [PUBMED:14699115].

Gene Ontology

The mapping between Pfam and Gene Ontology is provided by InterPro. If you use this data please cite InterPro.

Domain organisation

Below is a listing of the unique domain organisations or architectures in which this domain is found. More...

Loading domain graphics...

Alignments

We store a range of different sequence alignments for families. As well as the seed alignment from which the family is built, we provide the full alignment, generated by searching the sequence database using the family HMM. We also generate alignments using four representative proteomes (RP) sets, the NCBI sequence database, and our metagenomics sequence database. More...

View options

We make a range of alignments for each Pfam-A family. You can see a description of each above. You can view these alignments in various ways but please note that some types of alignment are never generated while others may not be available for all families, most commonly because the alignments are too large to handle.

  Seed
(30)
Full
(269)
Representative proteomes NCBI
(247)
Meta
(0)
RP15
(55)
RP35
(92)
RP55
(147)
RP75
(191)
Jalview View  View  View  View  View  View  View   
HTML View  View  View  View  View  View     
PP/heatmap 1 View  View  View  View  View     
Pfam viewer View  View             

1Cannot generate PP/Heatmap alignments for seeds; no PP data available

Key: ✓ available, x not generated, not available.

Format an alignment

  Seed
(30)
Full
(269)
Representative proteomes NCBI
(247)
Meta
(0)
RP15
(55)
RP35
(92)
RP55
(147)
RP75
(191)
Alignment:
Format:
Order:
Sequence:
Gaps:
Download/view:

Download options

We make all of our alignments available in Stockholm format. You can download them here as raw, plain text files or as gzip-compressed files.

  Seed
(30)
Full
(269)
Representative proteomes NCBI
(247)
Meta
(0)
RP15
(55)
RP35
(92)
RP55
(147)
RP75
(191)
Raw Stockholm Download   Download   Download   Download   Download   Download   Download    
Gzipped Download   Download   Download   Download   Download   Download   Download    

You can also download a FASTA format file containing the full-length sequences for all sequences in the full alignment.

External links

MyHits provides a collection of tools to handle multiple sequence alignments. For example, one can refine a seed alignment (sequence addition or removal, re-alignment or manual edition) and then search databases for remote homologs using HMMER3.

Pfam alignments:

HMM logo

HMM logos is one way of visualising profile HMMs. Logos provide a quick overview of the properties of an HMM in a graphical form. You can see a more detailed description of HMM logos and find out how you can interpret them here. More...

Trees

This page displays the phylogenetic tree for this family's seed alignment. We use FastTree to calculate neighbour join trees with a local bootstrap based on 100 resamples (shown next to the tree nodes). FastTree calculates approximately-maximum-likelihood phylogenetic trees from our seed alignment.

Note: You can also download the data file for the tree.

Curation and family details

This section shows the detailed information about the Pfam family. You can see the definitions of many of the terms in this section in the glossary and a fuller explanation of the scoring system that we use in the scores section of the help pages.

Curation View help on the curation process

Seed source: TIGRFAMs (release 2.0);
Previous IDs: none
Type: Family
Author: TIGRFAMs, Finn RD
Number in seed: 30
Number in full: 269
Average length of the domain: 117.40 aa
Average identity of full alignment: 30 %
Average coverage of the sequence by the domain: 76.41 %

HMM information View help on HMM parameters

HMM build commands:
build method: hmmbuild -o /dev/null HMM SEED
search method: hmmsearch -Z 23193494 -E 1000 --cpu 4 HMM pfamseq
Model details:
Parameter Sequence Domain
Gathering cut-off 28.7 28.7
Trusted cut-off 28.9 28.7
Noise cut-off 28.6 28.6
Model length: 137
Family (HMM) version: 8
Download: download the raw HMM for this family

Species distribution

Sunburst controls

Show

This visualisation provides a simple graphical representation of the distribution of this family across species. You can find the original interactive tree in the adjacent tab. More...

Loading sunburst data...

Tree controls

Hide

The tree shows the occurrence of this domain across different species. More...

Loading...

Please note: for large trees this can take some time. While the tree is loading, you can safely switch away from this tab but if you browse away from the family page entirely, the tree will not be loaded.