Please note: this site relies heavily on the use of javascript. Without a javascript-enabled browser, this site will not function correctly. Please enable javascript and reload the page, or switch to a different browser.
3  structures 5  species 0  interactions 7  sequences 1  architecture

Family: Atracotoxin (PF05353)

Summary: Delta Atracotoxin

Pfam includes annotations and additional family information from a range of different sources. These sources can be accessed via the tabs below.

This is the Wikipedia entry entitled "Delta atracotoxin". More...

Delta atracotoxin Edit Wikipedia article

Delta Atracotoxin
ACTX spider toxin 1QDP.png
3D stick model of delta-atracotoxin-Ar1 (robustoxin)
Symbol Atracotoxin
Pfam PF05353
InterPro IPR008017
SCOP 1qdp
OPM protein 1vtx

Robustoxin (δ-ACTX-Ar1), sometimes misspelled robustotoxin, and alternatively known as delta atracotoxin, is a low-molecular-weight neurotoxic polypeptide found in the venom of the Sydney funnel-web spider (Atrax robustus).

Delta atracotoxin produces potentially fatal neurotoxic symptoms in primates by slowing the inactivation of sodium ion channels in autonomic and motor neurons. In the spiders' intended insect prey, the toxin exerts this same activity upon potassium and calcium ion channels.[1]

The structure of atracotoxin comprises a core beta region with a cystine knot motif, a feature seen in other neurotoxic polypeptides.[1][2]


Since 1927 records are kept of envenomations by the Sydney funnel-web spider and 14 deaths have been reported in medical literature between 1927 and 1981, when the antivenom became available. In all cases in which the sex of the spider was determined, death occurred after a bite from a male spider.[3]


Robustoxin (RBX) is a 42-residue peptide toxin. The amino acid sequence of RBX is unusual in that it contains three consecutive cysteine residues at positions 14–16. The Amino acid sequence of RBX is: cakkrnwcgk nedcccpmkc iyawynqqgs cqttitglfk kc A cysteine bridge exists between Cys1 and Cys15, Cys8 and Cys20, Cys14 and Cys31 and between Cys16 and Cys42.

The structure consists of a small triple-stranded beta-sheet stabilized by a disulfide knot, followed by a C-terminal extension comprising three classic or inverse y-turns. The disulfide knot is a ring consisting of two disulfide bonds (1-15 and 8-20) and the connecting backbone, through which a third disulfide bond (14-31) passes. The β-sheet, defined on the basis of inter-sheet hydrogen bonds, consists of residues 6-8 (strand I), 19-21 (strand II) and 29-32 (strand III), with a topology of +2x, —1. The two hydrogen bonds (one amide of which has a slowly exchanging amide proton) between strands I and III are distorted (NH to CO distance between 2.5 and 3.0 A). There are four hydrogen bonds between strands II and III (all of which have corresponding slowly exchanging amide protons), three being present in most of the structures and one in half of the structures. The structure contains a number of chain reversals. The first is not well defined and is either a type II ß-turn (Lys3-Asn6) or a y-turn centered on Arg5. Chain reversal II is a y turn centered on Gly9. Chain reversal III is not well defined, being either a type I ß-turn (Asnn-Cys14) or an inverse y-turn centered on Asn11. Chain reversal IV (Cys15-Met18) is not stabilized by a hydrogen bond but has a cis peptide bond between Cys16 and Pro17 and resembles a type Via turn. The fifth chain reversal occurs in the region of residues 22-28, which fulfill the criteria for an i2-loop. The C-terminal extension, stabilized by the Cys16-Cys42 disulfide bond, consists of three y-turns, VI-VIII, that are, respectively, an inverse turn, centered on Thr33, a classic turn centered on Ile35 and an inverse turn centered on Phe39. All three of the y-turn hydrogen bonds have slowly exchanging amide protons (although this is not the case for the other turns). The only slowly exchanging amide proton not accounted for by consensus hydrogen bonds in any secondary structure element is that of Gly37 (which hydrogen bonds to Thr34 in one of the structures). The conformations of the Cys1-Cys15 and Cys8-Cys20 disulfide bonds are well defined and have negative and positive Xss, respectively; the other two bonds have lower order parameters. The hydrophobic core of RBX is limited, consisting of essentially the disulfide knot cystine residues and the buried Met18. However, the 22-28 loop contains one apolar residue, Ala23, and three aromatics, Tyr22, Trp24 and Tyr25, and is flanked by Ile21 at its N-terminus and Trp7 near its C-terminus, so this region represents a significant non-polar surface on the molecule. RBX is highly positively charged, with one Arg (sequence position 5) and six Lys (3, 4, 10, 19, 40 and 41) residues, balanced only by Glu12 and Asp13. These charged residues form three patches on the surface. Patch A consists of the positively charged residues 3,4 and 5, patch B of residues 10, 12, 13 and the N-terminus (including possible salt bridges between Lys10 and Glu12 and Asp13 and the N-terminus), and patch C of 19, 40, 41 and the C-terminus.[2]

Mechanism of action[edit]


Robustoxin or d-Atracotoxin (d-ACTX) is responsible for the potentially lethal envenomation syndrome seen following funnel-web spider envenomation. d-Atracotoxins induce spontaneous, repetitive firing and prolongation of action potentials resulting in neurotransmitter release from somatic and autonomic nerve endings. This will lead to slower voltage-gated sodium channel inactivation and a hyperpolarizing shift in the voltage-dependence of activation. This action is due to voltage-dependent binding to neurotoxin receptor site-3 in a similar, but not identical, fashion to scorpion a-toxins and sea anemone toxins. In the sea anemone and scorpion toxins, combinations of charged (especially cationic) and hydrophobic side-chains are important for binding to their receptor site (site 3) on the sodium channel. It will therefore be not surprising to find that the same applies to RBX and versutoxin (a close homologue of RBX). RBX presents three distinct charged patches on its surface, as well as a non-polar region centered on the 22-28 loop. Both of these structural features may play a role in its binding to the voltage-gated sodium channel, but further studies are necessary in defining which residues are important for interaction with the sodium channel so that a plausible model can be constructed of its binding site.[2]

Mechanism of action of synthetic d-ACTX[edit]

The availability of synthetic toxin has allowed scientist to further explore the biological activity of the toxin, resulting in the observation that d-ACTX-Ar1a causes repetitive firing and prolongation of the action potential. These actions underlie the clinical symptoms seen during envenomation and further contribute to the understanding of the molecular basis for activity of this potent neurotoxin on voltage-gated sodium channels.

Under voltage-clamp conditions in dorsal root ganglion (DRG) neurons is found that the effects of the synthetic toxin on sodium currents were not significantly different from those previously reported for the native toxin. Neither native nor synthetic d-ACTX-Ar1a had any effect on TTX-resistant sodium currents, but both exerted a potent selective modulation of TTX-sensitive sodium currents consistent with actions on neurotoxin receptor site-3. This includes a slowing of the sodium-channel inactivation, a hyperpolarizing shift in the voltage-dependence of activation and a hyperpolarizing shift in the steady-state sodium-channel inactivation.

d-ACTX-Ar1a causes a prolongation of action potential duration, accompanied by spontaneous repetitive firing, but does not depolarize the resting membrane potential. Effects on the autonomic nervous system, including vomiting, profuse sweating, salivation, lachrymation, marked hypertension followed by hypotension, together with effect on the somatic nervous system to cause muscle fasciculation and dyspnoea are presumably due to excessive transmitter release. To identify the sodium-channel binding surface of d-ACTX-Ar1a, scientist must synthesize analogues with selected residue changes. Studies will contribute to a more detailed mapping of site-3, the neurotoxin receptor site on the sodium-channel and provide structure-activity data critical for determing the phylaspecific actions of this and related atracotoxins.[2][4][5]


The bite of a Sydney funnel web spider is at first painful, due to the large fangs and acidic pH of the venom. If there is no immediate treatment symptoms may arise after 10 minutes after the bite.[3] Hypertension may occur, which is often followed by a prolonged hypotension and circulatory failure. Other symptoms include dyspnea and ultimately respiratory failure, generalized skeletal muscle fasciculation, salivation, lachrymation, sweating, nausea, vomiting, diarrhoea, pulmonary edema and pain.

The progress of the envenomation is precisely studied in primates, which symptoms are very similar to those of humans. In the first 25 minutes after envenomation disturbances in respiration occurred, which gradually became worse. Some monkeys required artificial ventilation. Initially, the blood pressure decreased, but then quickly rose, after which the blood pressure gradually declined. After 40-100 minutes severe hypotension occurred. Lachrymation started after 6-15 minutes and was followed by salivation. These symptoms were most severe during 15-35 minutes after envenomation. Skeletal muscle fasciculation started after 8-10 minutes and reached its peak between 20-45 minutes. It was accompanied with an increase in body temperature.

Envenomation with the male venom produced mostly the same symptoms, although the onset of the symptoms was a little delayed. The female venom also produces the same symptoms, but far less severe.[6]


The toxicity of the spider’s venom is affected by the sex of the spider. The male funnel web spider’s venom appears to be six times more powerful than that of the female spider, based on minimum lethal dose determinations. In addition, different species of animals tend to react to the venom in various ways. For example, rats, rabbits and cats are unaffected by the bite of a female funnel web spider, whereas for 20 percent of mice and guinea pigs the bite of a female was fatal. A bite of a male funnel web spider, though, led to the death of almost all mice and guinea pigs. Despite male spider’s venom seems to be more potent, male spider bites cause mild transient effects in dogs and cats. Most primates, including humans, appear to be extremely sensitive to the funnel web spider’s venom.[7]

The LD50 values have been determined in mice, for male spider venom 3,3 mg/kg body weight of the mouse and for female spider venom 50 mg/kg body weight were found. The LD50 value of pure robustoxin which was isolated from a male spider, 0,15 mg/kg body weight was found.[8]


The antivenom was developed by a team headed by Struan Sutherland at the Commonwealth Serum Laboratories in Melbourne. Since the antivenom became available in 1981, there have been no recorded fatalities from Sydney funnel-web spider bites. In September 2012, it was reported that stocks of antivenom were running low, and members of the public were asked to catch the spiders so that they could be milked for their venom. The venom is taken from the spiders by delicately stroking their fangs and collecting the tiny droplets of deadly poison. The venom is needed to produce the antivenom. One dose of antivenom requires around 70 milkings from a spider.

Funnel web spider antivenom is prepared from the plasma of rabbits immunized with the venom of the male funnel web spider (Atrax robustus). Each vial of the product contains 125 units of antivenom which has been standardized to neutralize 1.25 mg of funnel web spider venom. The product also contains glycine and other rabbit plasma proteins.

Funnel web spider antivenom is a purified immunoglobulin (mainly immunoglobulin G), derived from rabbit plasma, which contains specific antibodies against the toxic substances in the venom of the funnel web spider, Atrax robustus. There is evidence to show that the antivenom is effective in the treatment of patients bitten by some other funnel web spiders of the Hadronyche genus (formerly Atrax).[9]


  1. ^ a b Mackay, JP; King, GF; Fletcher, JI; Chapman, BE; Howden, ME (1997). "The structure of versutoxin (δ-atracotoxin-Hv1) provides insights into the binding of site 3 neurotoxins to the voltage-gated sodium channel". Structure 5 (11): 1525–1535. doi:10.1016/S0969-2126(97)00301-8. PMID 9384567. 
  2. ^ a b c d Pallaghya, P. K.; Alewoodb, D.; Alewoodb, P. F.; Nortona, R. S. (1997). "Solution structure of robustoxin, the lethal neurotoxin from the funnel-web spider Atrax robustus". FEBS Letters 419 (2): 191–196. doi:10.1016/S0014-5793(97)01452-X. 
  3. ^ a b G.M. Nicholson, A. Graudins. 2002. Spiders of medical importance in the Asia-Pacific: atracotoxin, latrotoxin and related spider neurotoxins. Clin.Exp.Pharmacol.Physiol. 29(9): 785-794.
  4. ^ G.M. Nicholson et at. 2004. Structure and function of δ-atracotoxins: lethal neurotoxins targeting the voltage-gated sodium channel. Toxicon. 43(5): 587-599.
  5. ^ D. Alewood et al. 2003. Synthesis and characterization of delta-atracotoxin-Ar1a, the lethal neurotoxin from venom of the Sydney funnel-web spider (Atrax robustus). Biochemistry. 42(44): 12933-12940.
  6. ^ J.Ewan et al. 1989. Actions of robustoxin, a neurotoxic polypeptide from the venom of the male funnel-web spider (atrax robustus), in anaesthetized monkeys. Toxicon. 27(4): 481-492.
  7. ^ Gupta, R. C. (2007). Veterinary Toxicology: basic and Clinical Principles. Academic Press.
  8. ^ D.D. Sheumack, et al. 1984. A Comparative study of properties and toxic constituents of funnel web spider (Atrax) venoms. Comp. Biochem. Physiol. 78C(1): 55-68.
  9. ^ Funnel web spider antivenom - Product information. Retrieved from,0.pdf

External links[edit]

This page is based on a Wikipedia article. The text is available under the Creative Commons Attribution/Share-Alike License.

This tab holds the annotation information that is stored in the Pfam database. As we move to using Wikipedia as our main source of annotation, the contents of this tab will be gradually replaced by the Wikipedia tab.

Delta Atracotoxin Provide feedback

Delta atracotoxin produces potentially fatal neurotoxic symptoms in primates by slowing he inactivation of voltage-gated sodium channels [1]. The structure of atracotoxin comprises a core beta region containing a triple-stranded a thumb-like extension protruding from the beta region and a C-terminal helix. The beta region contains a cystine knot motif, a feature seen in other neurotoxic polypeptides [1].

Literature references

  1. Fletcher JI, Chapman BE, Mackay JP, Howden ME, King GF; , Structure 1997;5:1525-1535.: The structure of versutoxin (delta-atracotoxin-Hv1) provides insights into the binding of site 3 neurotoxins to the voltage-gated sodium channel. PUBMED:9384567 EPMC:9384567

External database links

This tab holds annotation information from the InterPro database.

InterPro entry IPR008017

Delta atracotoxin produces potentially fatal neurotoxic symptoms in primates by slowing the inactivation of voltage-gated sodium channels [PUBMED:9384567]. The structure of atracotoxin comprises a core beta region containing a triple-stranded a thumb-like extension protruding from the beta region and a C-terminal helix. The beta region contains a cystine knot motif, a feature seen in other neurotoxic polypeptides [PUBMED:9384567].

Gene Ontology

The mapping between Pfam and Gene Ontology is provided by InterPro. If you use this data please cite InterPro.

Domain organisation

Below is a listing of the unique domain organisations or architectures in which this domain is found. More...

Loading domain graphics...


We store a range of different sequence alignments for families. As well as the seed alignment from which the family is built, we provide the full alignment, generated by searching the sequence database using the family HMM. We also generate alignments using four representative proteomes (RP) sets, the NCBI sequence database, and our metagenomics sequence database. More...

View options

We make a range of alignments for each Pfam-A family. You can see a description of each above. You can view these alignments in various ways but please note that some types of alignment are never generated while others may not be available for all families, most commonly because the alignments are too large to handle.

Representative proteomes NCBI
Jalview View  View          View   
HTML View  View             
PP/heatmap 1 View             
Pfam viewer View  View             

1Cannot generate PP/Heatmap alignments for seeds; no PP data available

Key: ✓ available, x not generated, not available.

Format an alignment

Representative proteomes NCBI

Download options

We make all of our alignments available in Stockholm format. You can download them here as raw, plain text files or as gzip-compressed files.

Representative proteomes NCBI
Raw Stockholm Download   Download           Download    
Gzipped Download   Download           Download    

You can also download a FASTA format file containing the full-length sequences for all sequences in the full alignment.

External links

MyHits provides a collection of tools to handle multiple sequence alignments. For example, one can refine a seed alignment (sequence addition or removal, re-alignment or manual edition) and then search databases for remote homologs using HMMER3.

Pfam alignments:

HMM logo

HMM logos is one way of visualising profile HMMs. Logos provide a quick overview of the properties of an HMM in a graphical form. You can see a more detailed description of HMM logos and find out how you can interpret them here. More...


This page displays the phylogenetic tree for this family's seed alignment. We use FastTree to calculate neighbour join trees with a local bootstrap based on 100 resamples (shown next to the tree nodes). FastTree calculates approximately-maximum-likelihood phylogenetic trees from our seed alignment.

Note: You can also download the data file for the tree.

Curation and family details

This section shows the detailed information about the Pfam family. You can see the definitions of many of the terms in this section in the glossary and a fuller explanation of the scoring system that we use in the scores section of the help pages.

Curation View help on the curation process

Seed source: Pfam-B_30981 (release 7.8)
Previous IDs: none
Type: Family
Author: Finn RD
Number in seed: 5
Number in full: 7
Average length of the domain: 42.10 aa
Average identity of full alignment: 65 %
Average coverage of the sequence by the domain: 76.62 %

HMM information View help on HMM parameters

HMM build commands:
build method: hmmbuild -o /dev/null HMM SEED
search method: hmmsearch -Z 23193494 -E 1000 --cpu 4 HMM pfamseq
Model details:
Parameter Sequence Domain
Gathering cut-off 25.0 25.0
Trusted cut-off 35.0 76.1
Noise cut-off 20.8 19.9
Model length: 42
Family (HMM) version: 6
Download: download the raw HMM for this family

Species distribution

Sunburst controls


This visualisation provides a simple graphical representation of the distribution of this family across species. You can find the original interactive tree in the adjacent tab. More...

Loading sunburst data...

Tree controls


The tree shows the occurrence of this domain across different species. More...


Please note: for large trees this can take some time. While the tree is loading, you can safely switch away from this tab but if you browse away from the family page entirely, the tree will not be loaded.


For those sequences which have a structure in the Protein DataBank, we use the mapping between UniProt, PDB and Pfam coordinate systems from the PDBe group, to allow us to map Pfam domains onto UniProt sequences and three-dimensional protein structures. The table below shows the structures on which the Atracotoxin domain has been found. There are 3 instances of this domain found in the PDB. Note that there may be multiple copies of the domain in a single PDB structure, since many structures contain multiple copies of the same protein seqence.

Loading structure mapping...