Please note: this site relies heavily on the use of javascript. Without a javascript-enabled browser, this site will not function correctly. Please enable javascript and reload the page, or switch to a different browser.
8  structures 45  species 1  interaction 95  sequences 3  architectures

Family: AChE_tetra (PF08674)

Summary: Acetylcholinesterase tetramerisation domain

Pfam includes annotations and additional family information from a range of different sources. These sources can be accessed via the tabs below.

The Pfam group coordinates the annotation of Pfam families in Wikipedia, but we have not yet assigned a Wikipedia article to this family. If you think that a particular Wikipedia article provides good annotation, please let us know.

This tab holds the annotation information that is stored in the Pfam database. As we move to using Wikipedia as our main source of annotation, the contents of this tab will be gradually replaced by the Wikipedia tab.

Acetylcholinesterase tetramerisation domain Provide feedback

The acetylcholinesterase tetramerisation domain is found at the C terminus and forms a left handed superhelix.

Literature references

  1. Dvir H, Harel M, Bon S, Liu WQ, Vidal M, Garbay C, Sussman JL, Massoulie J, Silman I; , EMBO J. 2004;23:4394-4405.: The synaptic acetylcholinesterase tetramer assembles around a polyproline II helix. PUBMED:15526038 EPMC:15526038


External database links

This tab holds annotation information from the InterPro database.

InterPro entry IPR014788

Cholinesterase enzymes are members of the broader alpha/beta hydrolase family and can be dividied into two distinct groups: those that catalyse the hydrolysis of acetylcholine to choline and acetate (acetylcholinesterases EC) acetylcholine + H2O -> choline + acetate and those that catalyse the conversion of other acylcholines to a choline and a weak acid (cholinesterases EC) an acylcholine + H2O -> choline + a carboxylate

Acetylcholinesterase also acts on a variety of acetic esters and catalyses transacetylations. It is the most intensively studied of the cholinesterase enzymes due to its key physiological role in the turnover of the neurotransmitter acylcholine [PUBMED:15907917]. This enzyme is found in, or attached to, cellular or basement membranes of presynaptic cholinergic neurons and postsynaptic cholinoceptive cells within the neuromuscular junction. Signal transmission at the neuromuscular junction involves the release of acylcholine, its interaction with the acycholine receptor and hydrolysis, all occuring in a period of a few milliseconds. Rapid hydrolysis of the newly released aceytlcholine is vital in order to prevent continuous firing of the nerve impulses [PUBMED:8161450]. Consistent with its role in this process, acetylcholinesterase has an unusually high turnover number, ensuring that acetylcholine is broken down quickly. There is evidence to suggest that acetylcholinesterase has additional important roles including involvement in neuronal adhesion, the formation of Alzheimer fibrils, and neurite growth [PUBMED:8890157, PUBMED:8608006, PUBMED:11169626].

The 3D structure of acetylcholinesterase and a cholinesterase have been determined [PUBMED:1678899, PUBMED:12869558]. These proteins share the 3-layer alpha-beta-alpha sandwich fold common to members of the alpha/beta hydrolase family. Surprisingly, given the high turnover number of acetylcholinesterase, the active site of these enzymes is located at the bottom of a deep and narrow cleft, named the active-site gorge.

The acetylcholinesterase tetramerisation domain is found at the C terminus and forms a left handed superhelix.

Gene Ontology

The mapping between Pfam and Gene Ontology is provided by InterPro. If you use this data please cite InterPro.

Domain organisation

Below is a listing of the unique domain organisations or architectures in which this domain is found. More...

Loading domain graphics...

Alignments

We store a range of different sequence alignments for families. As well as the seed alignment from which the family is built, we provide the full alignment, generated by searching the sequence database using the family HMM. We also generate alignments using four representative proteomes (RP) sets, the NCBI sequence database, and our metagenomics sequence database. More...

View options

We make a range of alignments for each Pfam-A family. You can see a description of each above. You can view these alignments in various ways but please note that some types of alignment are never generated while others may not be available for all families, most commonly because the alignments are too large to handle.

  Seed
(6)
Full
(95)
Representative proteomes NCBI
(93)
Meta
(0)
RP15
(5)
RP35
(6)
RP55
(17)
RP75
(45)
Jalview View  View  View  View  View  View  View   
HTML View  View  View  View  View  View     
PP/heatmap 1 View  View  View  View  View     
Pfam viewer View  View             

1Cannot generate PP/Heatmap alignments for seeds; no PP data available

Key: ✓ available, x not generated, not available.

Format an alignment

  Seed
(6)
Full
(95)
Representative proteomes NCBI
(93)
Meta
(0)
RP15
(5)
RP35
(6)
RP55
(17)
RP75
(45)
Alignment:
Format:
Order:
Sequence:
Gaps:
Download/view:

Download options

We make all of our alignments available in Stockholm format. You can download them here as raw, plain text files or as gzip-compressed files.

  Seed
(6)
Full
(95)
Representative proteomes NCBI
(93)
Meta
(0)
RP15
(5)
RP35
(6)
RP55
(17)
RP75
(45)
Raw Stockholm Download   Download   Download   Download   Download   Download   Download    
Gzipped Download   Download   Download   Download   Download   Download   Download    

You can also download a FASTA format file containing the full-length sequences for all sequences in the full alignment.

External links

MyHits provides a collection of tools to handle multiple sequence alignments. For example, one can refine a seed alignment (sequence addition or removal, re-alignment or manual edition) and then search databases for remote homologs using HMMER3.

Pfam alignments:

HMM logo

HMM logos is one way of visualising profile HMMs. Logos provide a quick overview of the properties of an HMM in a graphical form. You can see a more detailed description of HMM logos and find out how you can interpret them here. More...

Trees

This page displays the phylogenetic tree for this family's seed alignment. We use FastTree to calculate neighbour join trees with a local bootstrap based on 100 resamples (shown next to the tree nodes). FastTree calculates approximately-maximum-likelihood phylogenetic trees from our seed alignment.

Note: You can also download the data file for the tree.

Curation and family details

This section shows the detailed information about the Pfam family. You can see the definitions of many of the terms in this section in the glossary and a fuller explanation of the scoring system that we use in the scores section of the help pages.

Curation View help on the curation process

Seed source: pdb_1vzj
Previous IDs: none
Type: Domain
Author: Mistry J
Number in seed: 6
Number in full: 95
Average length of the domain: 37.40 aa
Average identity of full alignment: 68 %
Average coverage of the sequence by the domain: 6.56 %

HMM information View help on HMM parameters

HMM build commands:
build method: hmmbuild -o /dev/null HMM SEED
search method: hmmsearch -Z 23193494 -E 1000 --cpu 4 HMM pfamseq
Model details:
Parameter Sequence Domain
Gathering cut-off 25.0 25.0
Trusted cut-off 28.1 28.1
Noise cut-off 22.2 21.1
Model length: 37
Family (HMM) version: 5
Download: download the raw HMM for this family

Species distribution

Sunburst controls

Show

This visualisation provides a simple graphical representation of the distribution of this family across species. You can find the original interactive tree in the adjacent tab. More...

Loading sunburst data...

Tree controls

Hide

The tree shows the occurrence of this domain across different species. More...

Loading...

Please note: for large trees this can take some time. While the tree is loading, you can safely switch away from this tab but if you browse away from the family page entirely, the tree will not be loaded.

Interactions

There is 1 interaction for this family. More...

AChE_tetra

Structures

For those sequences which have a structure in the Protein DataBank, we use the mapping between UniProt, PDB and Pfam coordinate systems from the PDBe group, to allow us to map Pfam domains onto UniProt sequences and three-dimensional protein structures. The table below shows the structures on which the AChE_tetra domain has been found. There are 8 instances of this domain found in the PDB. Note that there may be multiple copies of the domain in a single PDB structure, since many structures contain multiple copies of the same protein seqence.

Loading structure mapping...