Please note: this site relies heavily on the use of javascript. Without a javascript-enabled browser, this site will not function correctly. Please enable javascript and reload the page, or switch to a different browser.
2  structures 295  species 0  interactions 438  sequences 10  architectures

Family: COP-gamma_platf (PF08752)

Summary: Coatomer gamma subunit appendage platform subdomain

Pfam includes annotations and additional family information from a range of different sources. These sources can be accessed via the tabs below.

The Pfam group coordinates the annotation of Pfam families in Wikipedia, but we have not yet assigned a Wikipedia article to this family. If you think that a particular Wikipedia article provides good annotation, please let us know.

This tab holds the annotation information that is stored in the Pfam database. As we move to using Wikipedia as our main source of annotation, the contents of this tab will be gradually replaced by the Wikipedia tab.

Coatomer gamma subunit appendage platform subdomain Provide feedback

COPI-coated vesicles function in retrograde transport from the Golgi to the ER, and in intra-Golgi transport. This is the platform subdomain of the coatomer gamma subunit appendage domain. It carries a protein-protein interaction site at UniProt:P53620 residue W776, which in yeast binds to the ARFGAP Glo3p, and in mammalian gamma-COP binds to a Glo3p orthologue, ARFGAP2 [1].

Literature references

  1. Watson PJ, Frigerio G, Collins BM, Duden R, Owen DJ; , Traffic. 2004;5:79-88.: Gamma-COP appendage domain - structure and function. PUBMED:14690497 EPMC:14690497


External database links

This tab holds annotation information from the InterPro database.

InterPro entry IPR014863

Proteins synthesised on the ribosome and processed in the endoplasmic reticulum are transported from the Golgi apparatus to the trans-Golgi network (TGN), and from there via small carrier vesicles to their final destination compartment. This traffic is bidirectional, to ensure that proteins required to form vesicles are recycled. Vesicles have specific coat proteins (such as clathrin or coatomer) that are important for cargo selection and direction of transfer [PUBMED:15261670]. While clathrin mediates endocytic protein transport, and transport from ER to Golgi, coatomers primarily mediate intra-Golgi transport, as well as the reverse Golgi to ER transport of dilysine-tagged proteins [PUBMED:14690497]. For example, the coatomer COP1 (coat protein complex 1) is responsible for reverse transport of recycled proteins from Golgi and pre-Golgi compartments back to the ER, while COPII buds vesicles from the ER to the Golgi [PUBMED:11208122]. Coatomers reversibly associate with Golgi (non-clathrin-coated) vesicles to mediate protein transport and for budding from Golgi membranes [PUBMED:17041781]. Activated small guanine triphosphatases (GTPases) attract coat proteins to specific membrane export sites, thereby linking coatomers to export cargos. As coat proteins polymerise, vesicles are formed and budded from membrane-bound organelles. Coatomer complexes also influence Golgi structural integrity, as well as the processing, activity, and endocytic recycling of LDL receptors. In mammals, coatomer complexes can only be recruited by membranes associated to ADP-ribosylation factors (ARFs), which are small GTP-binding proteins. Coatomer complexes are hetero-oligomers composed of at least an alpha, beta, beta', gamma, delta, epsilon and zeta subunits.

This entry represents the C-terminal appendage domain of the gamma subunit of coatomer complexes. The appendage domain of the gamma coatomer subunit has a similar overall structural fold to the appendage domain of clathrin adaptors, and can also share the same motif-based cargo recognition and accessory factor recruitment mechanisms. The coatomer gamma subunit appendage domain contains a protein-protein interaction site and a second proposed binding site that interacts with the alpha, beta, epsilon COPI subcomplex [PUBMED:14690497].

More information about these proteins can be found at Protein of the Month: Clathrin [PUBMED:].

Gene Ontology

The mapping between Pfam and Gene Ontology is provided by InterPro. If you use this data please cite InterPro.

Domain organisation

Below is a listing of the unique domain organisations or architectures in which this domain is found. More...

Loading domain graphics...

Pfam Clan

This family is a member of clan E-set (CL0159), which has the following description:

This clan includes a diverse range of domains that have an Ig-like fold and appear to be distantly related to each other. The clan includes: PKD domains, cadherins and several families of bacterial Ig-like domains as well as viral tail fibre proteins. it also includes several Fibronectin type III domain-containing families.

The clan contains the following 63 members:

A2M_N Alpha_adaptinC2 Big_1 Big_2 Big_3 Big_3_2 Big_3_3 Big_3_4 Big_4 Big_5 BiPBP_C BsuPI Cadherin Cadherin-like Cadherin_2 Cadherin_pro CARDB CHB_HEX_C CHB_HEX_C_1 ChitinaseA_N CHU_C Coatamer_beta_C COP-gamma_platf CopC DUF1034 DUF11 DUF1973 DUF2271 DUF4165 DUF4625 DUF916 EpoR_lig-bind Filamin FixG_C FlgD_ig fn3 Fn3_assoc He_PIG HYR IFNGR1 IL6Ra-bind Integrin_alpha2 Interfer-bind Invasin_D3 MG1 Mo-co_dimer Neurexophilin NPCBM_assoc PapD_N PKD PPC Qn_am_d_aIII REJ Rib SoxZ SprB SWM_repeat T2SS-T3SS_pil_N TIG Tissue_fac Transglut_C TRAP_beta Y_Y_Y

Alignments

We store a range of different sequence alignments for families. As well as the seed alignment from which the family is built, we provide the full alignment, generated by searching the sequence database using the family HMM. We also generate alignments using four representative proteomes (RP) sets, the NCBI sequence database, and our metagenomics sequence database. More...

View options

We make a range of alignments for each Pfam-A family. You can see a description of each above. You can view these alignments in various ways but please note that some types of alignment are never generated while others may not be available for all families, most commonly because the alignments are too large to handle.

  Seed
(81)
Full
(438)
Representative proteomes NCBI
(436)
Meta
(6)
RP15
(101)
RP35
(159)
RP55
(238)
RP75
(300)
Jalview View  View  View  View  View  View  View  View 
HTML View  View  View  View  View  View     
PP/heatmap 1 View  View  View  View  View     
Pfam viewer View  View             

1Cannot generate PP/Heatmap alignments for seeds; no PP data available

Key: ✓ available, x not generated, not available.

Format an alignment

  Seed
(81)
Full
(438)
Representative proteomes NCBI
(436)
Meta
(6)
RP15
(101)
RP35
(159)
RP55
(238)
RP75
(300)
Alignment:
Format:
Order:
Sequence:
Gaps:
Download/view:

Download options

We make all of our alignments available in Stockholm format. You can download them here as raw, plain text files or as gzip-compressed files.

  Seed
(81)
Full
(438)
Representative proteomes NCBI
(436)
Meta
(6)
RP15
(101)
RP35
(159)
RP55
(238)
RP75
(300)
Raw Stockholm Download   Download   Download   Download   Download   Download   Download   Download  
Gzipped Download   Download   Download   Download   Download   Download   Download   Download  

You can also download a FASTA format file containing the full-length sequences for all sequences in the full alignment.

External links

MyHits provides a collection of tools to handle multiple sequence alignments. For example, one can refine a seed alignment (sequence addition or removal, re-alignment or manual edition) and then search databases for remote homologs using HMMER3.

Pfam alignments:

HMM logo

HMM logos is one way of visualising profile HMMs. Logos provide a quick overview of the properties of an HMM in a graphical form. You can see a more detailed description of HMM logos and find out how you can interpret them here. More...

Trees

This page displays the phylogenetic tree for this family's seed alignment. We use FastTree to calculate neighbour join trees with a local bootstrap based on 100 resamples (shown next to the tree nodes). FastTree calculates approximately-maximum-likelihood phylogenetic trees from our seed alignment.

Note: You can also download the data file for the tree.

Curation and family details

This section shows the detailed information about the Pfam family. You can see the definitions of many of the terms in this section in the glossary and a fuller explanation of the scoring system that we use in the scores section of the help pages.

Curation View help on the curation process

Seed source: pdb_1r4x
Previous IDs: Gamma-COP;
Type: Domain
Author: Mistry J
Number in seed: 81
Number in full: 438
Average length of the domain: 145.80 aa
Average identity of full alignment: 42 %
Average coverage of the sequence by the domain: 17.35 %

HMM information View help on HMM parameters

HMM build commands:
build method: hmmbuild -o /dev/null HMM SEED
search method: hmmsearch -Z 23193494 -E 1000 --cpu 4 HMM pfamseq
Model details:
Parameter Sequence Domain
Gathering cut-off 25.0 25.0
Trusted cut-off 25.2 25.0
Noise cut-off 24.2 23.8
Model length: 151
Family (HMM) version: 5
Download: download the raw HMM for this family

Species distribution

Sunburst controls

Show

This visualisation provides a simple graphical representation of the distribution of this family across species. You can find the original interactive tree in the adjacent tab. More...

Loading sunburst data...

Tree controls

Hide

The tree shows the occurrence of this domain across different species. More...

Loading...

Please note: for large trees this can take some time. While the tree is loading, you can safely switch away from this tab but if you browse away from the family page entirely, the tree will not be loaded.

Structures

For those sequences which have a structure in the Protein DataBank, we use the mapping between UniProt, PDB and Pfam coordinate systems from the PDBe group, to allow us to map Pfam domains onto UniProt sequences and three-dimensional protein structures. The table below shows the structures on which the COP-gamma_platf domain has been found. There are 2 instances of this domain found in the PDB. Note that there may be multiple copies of the domain in a single PDB structure, since many structures contain multiple copies of the same protein seqence.

Loading structure mapping...