Please note: this site relies heavily on the use of javascript. Without a javascript-enabled browser, this site will not function correctly. Please enable javascript and reload the page, or switch to a different browser.
0  structures 388  species 0  interactions 605  sequences 1  architecture

Family: Lactococcin_972 (PF09683)

Summary: Bacteriocin (Lactococcin_972)

Pfam includes annotations and additional family information from a range of different sources. These sources can be accessed via the tabs below.

This is the Wikipedia entry entitled "Bacteriocin". More...

Bacteriocin Edit Wikipedia article

Lactococcin-like family
Identifiers
Symbol Lactococcin
Pfam PF04369
Pfam clan CL0400
InterPro IPR007464
TCDB 1.C.22
Bacteriocin (Lactococcin_972)
Identifiers
Symbol Lactococcin_972
Pfam PF09683
InterPro IPR006540

Bacteriocins are proteinaceous toxins produced by bacteria to inhibit the growth of similar or closely related bacterial strain(s). They are typically considered to be narrow spectrum antibiotics, though this has been debated.[1] They are phenomenologically analogous to yeast and paramecium killing factors, and are structurally, functionally, and ecologically diverse.

Bacteriocins were first discovered by A. Gratia in 1925.[2][3] He was involved in the process of searching for ways to kill bacteria, which also resulted in the development of antibiotics and the discovery of bacteriophage, all within a span of a few years. He called his first discovery a colicine because it killed E. coli.

Classification of bacteriocins[edit]

Bacteriocins are categorized in several ways, including producing strain, common resistance mechanisms, and mechanism of killing. There are several large categories of bacteriocin which are only phenomenologically related. These include the bacteriocins from gram-positive bacteria, the colicins,[4] the microcins, and the bacteriocins from Archaea. The bacteriocins from E. coli are called colicins (formerly called 'colicines,' meaning 'coli killers'). They are the longest studied bacteriocins. They are a diverse group of bacteriocins and do not include all the bacteriocins produced by E. coli. For example the bacteriocins produced by Staphylococcus warneri are called as warnerin[5] or warnericin. In fact, one of the oldest known so-called colicins was called colicin V and is now known as microcin V. It is much smaller and produced and secreted in a different manner than the classic colicins.

This naming system is problematic for a number of reasons. First, naming bacteriocins by what they putatively kill would be more accurate if their killing spectrum were contiguous with genus or species designations. The bacteriocins frequently possess spectra that exceed the bounds of their named taxa and almost never kill the majority of the taxa for which they are named. Further, the original naming is generally derived not from the sensitive strain the bacteriocin kills, but instead the organism that produces the bacteriocin. This makes the use of this naming system a problematic basis for theory; thus the alternative classification systems.

Bacteriocins that contain the modified amino acid Lanthionine as part of their structure are called lantibiotics.

Methods of classification[edit]

Alternative methods of classification include: method of killing (pore forming, dnase, nuclease, murein production inhibition, etc.), genetics (large plasmids, small plasmids, chromosomal), molecular weight and chemistry (large protein, polypeptide, with/without sugar moiety, containing atypical amino acids like lanthionine) and method of production (ribosomal, post ribosomal modifications, non-ribosomal).

One method of classification fits the bacteriocins into Class I, Class IIa/b/c, and Class III. [6]

Class I bacteriocins[edit]

The class I bacteriocins are small peptide inhibitors and include nisin and other lantibiotics.

Class II bacteriocins[edit]

The class II bacteriocins are small (<10 kDa) heat-stable proteins. This class is subdivided into five subclassses. The class IIa bacteriocins (pediocin-like bacteriocins) are the largest subgroup and contain an N-terminal consensus sequence -Tyr-Gly-Asn-Gly-Val-Xaa-Cys across this group. The C-terminal is responsible for species-specific activity, causing cell-leakage by permeabilizing the target cell wall.

Class IIa bacteriocins have a large potential for use in food preservation as well medical applications, due to their strong antilisterial activity, and broad range of activity. One example of Class IIa bacteriocin is pediocin PA-1.[7]

The class IIb bacteriocins (two-peptide bacteriocins) require two different peptides for activity. One such an example is lactococcin G, which permeabilizes cell membranes for monovalent ions such as Na and K, but not for divalents ones. Almost all of this bacteriocins have a GxxxG motifs. This motif is also found in transmembrane proteins where they are involved in helix-helix interactions. The bacteriocins GxxxG motifs can interact with the motifs in the membranes of the bacterial cells and kill the bacteria by doing so.[8]

Class IIc encompasses cyclic peptides, which possesses the N-terminal and C-terminal regions covalentely linked. Enterocin AS-48 is the prototype of this group.

Class IId cover single-peptide bacteriocins, which are not post-translated modified and do not show the pediocin-like signature. The best example of this group is the highly stable aureocin A53. This bacteriocin is stable under highly acidic environment (HCl 6 N), not affected by proteases and thermoresistant.[9]

The most recently proposed subclass is the Class IIe, which encompasses those bacteriocins composed by three or four non-pediocin like peptides. The best example is aureocin A70, a four-peptides bacteriocin, highly active against L. monocytogenes, with potential biotechnological applications.[10]

Class III bacteriocins[edit]

Class III bacteriocins are large, heat-labile (>10 kDa) protein bacteriocins. This class is subdivided in two subclasses: subclass IIIa or bacteriolysins and subclass IIIb. Subclass IIIa comprises those peptides that kill bacterial cells by cell-wall degradation, thus causing cell lysis. The best studied bacteriolysin is lysostaphin, a 27 kDa peptide that hydrolises several Staphylococcus spp. cell walls, principally S. aureus.[11] Subclass IIIb, in contrast, comprises those peptides that do not cause cell lysis, killing the target cells by disrupting the membrane potential, which causes ATP efflux .

Class IV bacteriocins[edit]

Class IV bacteriocins are defined as complex bacteriocins containing lipid or carbohydrate moities. Confirmatory experimental data was only recently established with the characterisation of Sublancin and Glycocin F (GccF) by two independent groups.[12][13]

Databases[edit]

Two databases of bacteriocins are available: BAGEL[14] and BACTIBASE.[15][16]

Medical significance[edit]

Bacteriocins are of interest in medicine because they are made by non-pathogenic bacteria that normally colonize the human body. Loss of these harmless bacteria following antibiotic use may allow opportunistic pathogenic bacteria to invade the human body[citation needed].

Bacteriocins have also been suggested as a cancer treatment.[17][18] They have shown distinct promise as a diagnostic agent for some cancers,[19][20][21][22][23] but their status as a form of therapy remains experimental and outside the main thread of cancer research. Partly this is due to questions about their mechanism of action and the presumption that anti-bacterial agents have no obvious connection to killing mammalian tumor cells. Some of these questions have been addressed, at least in part.[24][25]

Bacteriocins[which?] were tested as AIDS drugs around 1990, but did not progress beyond in-vitro tests on cell lines.[26] Bacteriocins can target individual bacterial species, or provide broad-spectrum killing of many microbes. As with today's antibiotics, bacteria can evolve to resist bacteriocins. However, they can be bioengineered to regain their effectiveness. Further, they could be produced in the body by intentionally introduced beneficial bacteria, as some probiotics do.[27]

Production[edit]

There are many ways to demonstrate bacteriocin production, depending on the sensitivity and labor intensiveness desired. To demonstrate their production, technicians stab inoculate multiple strains on separate multiple nutrient agar Petri dishes, incubate at 30 °C for 24 h., overlay each plate with one of the strains (in soft agar), incubate again at 30 °C for 24 h. After this process, the presence of bacteriocins can be inferred if there are zones of growth inhibition around stabs. This is the simplest and least sensitive way. It will often mistake phage for bacteriocins. Some methods prompt production with UV radiation, Mitomycin C, or heat shock. UV radiation and Mitomycin C are used because the DNA damage they produce stimulates the SOS response. Cross streaking may be substituted for lawns. Similarly, production in broth may be followed by dripping the broth on a nascent bacterial lawn, or even filtering it. Precipitation (ammonium sulfate) and some purification (e.g. column or HPLC) may help exclude lysogenic and lytic phage from the assay.

Bacteriocins by name[edit]

  • acidocin
  • actagardine
  • agrocin
  • alveicin
  • aureocin
  • aureocin A53
  • aureocin A70
  • carnocin
  • carnocyclin
  • colicin
  • curvaticin
  • divercin
  • duramycin
  • enterocin
  • enterolysin
  • epidermin/gallidermin
  • erwiniocin
  • glycinecin
  • halocin
  • haloduracin
  • Lactocin S, a bacteriocin produced by strain L45 of Lactobacillus sakei.[28]
  • lactococin
  • lacticin
  • leucoccin
  • macedocin
  • mersacidin
  • mesentericin
  • microbisporicin
  • Microcin S
  • mutacin
  • nisin
  • paenibacillin
  • planosporicin
  • pediocin
  • pentocin
  • plantaricin
  • pyocin [29]
  • reutericin
  • sakacin
  • salivaricin
  • subtilin
  • sulfolobicin
  • thuricin 17
  • trifolitoxin
  • variacin
  • vibriocin
  • warnericin
  • warnerin

See also[edit]

References[edit]

  1. ^ Farkas-Himsley H (1980). "Bacteriocins--are they broad-spectrum antibiotics?". J. Antimicrob. Chemother. 6 (4): 424–6. doi:10.1093/jac/6.4.424. PMID 7430010. 
  2. ^ Gratia A (1925). "Sur un remarquable example d'antagonisme entre deux souches de colibacille". Compt. Rend. Soc. Biol. 93: 1040–2. 
  3. ^ Gratia JP (October 2000). "André Gratia: a forerunner in microbial and viral genetics". Genetics 156 (2): 471–6. PMC 1461273. PMID 11014798. 
  4. ^ Cascales E, Buchanan SK, Duché D, et al. (March 2007). "Colicin Biology". Microbiol. Mol. Biol. Rev. 71 (1): 158–229. doi:10.1128/MMBR.00036-06. PMC 1847374. PMID 17347522. 
  5. ^ Prema P, Bharathy S, Palavesam A, Sivasubramanian M, Immanuel G (2006). "Detection, purification and efficacy of warnerin produced by Staphylococcus warneri". World Journal of Microbiology and Biotechnology 22 (8): 865–72. doi:10.1007/s11274-005-9116-y. 
  6. ^ Cotter PD, Hill C, Ross RP (2006). "What's in a name? Class distinction for bacteriocins". Nature Reviews Microbiology 4 (2). doi:10.1038/nrmicro1273-c2.  is author reply to comment on article :Cotter PD, Hill C, Ross RP (2005). "Bacteriocins: developing innate immunity for food". Nature Reviews Microbiology 3 (?): 777–88. doi:10.1038/nrmicro1273. PMID 16205711. 
  7. ^ HENG, C. K. N., WESCOMBE, P. A., BURTON, J. P., JACK, R. W., & TAGG, J. R. (2007). The diversity of bacteriocins in Gram-positive bacteria. In: Bacteriocins: Ecology and Evolution. 1st ed., Riley, M. A. & Chavan, M. A., Eds. Springer, Hildberg, p. 45-83.
  8. ^ USA (2013-08-12). "Structure-function relationships of th... [Curr Pharm Biotechnol. 2009] - PubMed - NCBI". Ncbi.nlm.nih.gov. PMID 19149588. Retrieved 2013-12-21. 
  9. ^ NETZ D. J., POHL , BECK-SICKINGER A. G., SELMER , PIERIK , SAHL H. G. (2002). "Biochemical characterisation and genetic analysis of aureocin A53, a new, atypical bacteriocin from Staphylococcus aureus". J. Mol. Biol 319: 745–756. 
  10. ^ NETZ D. J. A., SAHL , NASCIMENTO , OLIVEIRA , SOARES , BASTOS M. C. F. (2001). "Molecular characterisation of aureocin A70, a multiple-peptide bacteriocin isolated from Staphylococcus aureus". J. Mol. Biol 311: 939–949. 
  11. ^ Bastos M.C.F., Coutinho B.G., Coelho M.L.V. Lysostaphin: A Staphylococcal Bacteriolysin with Potential Clinical Applications. Pharmaceuticals. 2010; 3(4):1139-1161.
  12. ^ Oman T. J., Boettcher J. M., Wang H., Okalibe X. N., & Van der Donk W. A: Sublancin is not a Lantibiotic but an s-Linked Glycopeptide. Nat Chem Biol. 2011; 7(2):78-80.
  13. ^ Stepper J., Shastri S., Loo T. S., Preston J. C., Novak P., Man P., Moore C. H., Havlíček V., Patchett M. L., and Norris G. E:Cysteine s-Glycosylation, A New Post-Translational Modification Found In Glycopeptide Bacteriocins. FEBS letters. 2011; 585:645-650.
  14. ^ de Jong A, van Hijum S A F T, Bijlsma J J E, Kok J, Kuipers O P (2006). "BAGEL: a web-based bacteriocin genome mining tool". Nucleic Acids Research 34 (9): W273–W279. doi:10.1093/nar/gkl237. PMID 1538908. 
  15. ^ Hammami R, Zouhir A, Ben Hamida J, Fliss I (2007). "BACTIBASE: a new web-accessible database for bacteriocin characterization". BMC Microbiology 7: 89. doi:10.1186/1471-2180-7-89. PMC 2211298. PMID 17941971. 
  16. ^ Hammami R, Zouhir A, Le Lay C, Ben Hamida J, Fliss I (2010). "BACTIBASE second release: a database and tool platform for bacteriocin characterization". BMC Microbiology 10: 22. doi:10.1186/1471-2180-10-22. PMC 2824694. PMID 20105292. 
  17. ^ Farkas-Himsley H, Yu H (1985). "Purified colicin as cytotoxic agent of neoplasia: comparative study with crude colicin". Cytobios 42 (167–168): 193–207. PMID 3891240. 
  18. ^ Baumal R, Musclow E, Farkas-Himsley H, Marks A (1982). "Variants of an interspecies hybridoma with altered tumorigenicity and protective ability against mouse myeloma tumors". Cancer Res. 42 (5): 1904–8. PMID 7066902. 
  19. ^ Saito H, Watanabe T, Osasa S, Tado O (1979). "Susceptibility of normal and tumor cells to mycobacteriocin and mitomycin C". Hiroshima J. Med. Sci. 28 (3): 141–6. PMID 521305. 
  20. ^ Cruz-Chamorro L, Puertollano MA, Puertollano E, de Cienfuegos GA, de Pablo MA (2006). "In vitro biological activities of magainin alone or in combination with nisin". Peptides 27 (6): 1201–9. doi:10.1016/j.peptides.2005.11.008. PMID 16356589. 
  21. ^ Sand SL, Haug TM, Nissen-Meyer J, Sand O (2007). "The bacterial peptide pheromone plantaricin A permeabilizes cancerous, but not normal, rat pituitary cells and differentiates between the outer and inner membrane leaflet". J. Membr. Biol. 216 (2–3): 61–71. doi:10.1007/s00232-007-9030-3. PMID 17639368. 
  22. ^ Farkas-Himsley H, Hill R, Rosen B, Arab S, Lingwood CA (1995). "The bacterial colicin active against tumor cells in vitro and in vivo is verotoxin 1". Proceedings of the National Academy of Sciences of the United States of America 92 (15): 6996–7000. doi:10.1073/pnas.92.15.6996. PMC 41458. PMID 7624357. 
  23. ^ Musclow CE, Farkas-Himsley H, Weitzman SS, Herridge M (1987). "Acute lymphoblastic leukemia of childhood monitored by bacteriocin and flowcytometry". Eur J Cancer Clin Oncol 23 (4): 411–8. doi:10.1016/0277-5379(87)90379-8. PMID 3475205. 
  24. ^ Farkas-Himsley H, Zhang YS, Yuan M, Musclow CE (1992). "Partially purified bacteriocin kills malignant cells by apoptosis: programmed cell death". Cell. Mol. Biol. (Noisy-le-grand) 38 (5–6): 643–51. PMID 1483114. 
  25. ^ Farkas-Himsley H, Musclow CE (1986). "Bacteriocin receptors on malignant mammalian cells: are they transferrin receptors?". Cell. Mol. Biol. 32 (5): 607–17. PMID 3779762. 
  26. ^ Farkas-Himsley H, Freedman J, Read SE, Asad S, Kardish M (1991). "Bacterial proteins cytotoxic to HIV-1-infected cells". AIDS 5 (7): 905–7. doi:10.1097/00002030-199107000-00025. PMID 1892605. "Could someone please quote the relevant text" 
  27. ^ "What Comes After Antibiotics? 5 Alternatives to Stop Superbugs". Popular Mechanics. Retrieved 2013-12-21. 
  28. ^ Mørtvedt, C. I.; Nissen-Meyer, J.; Sletten, K.; Nes, I. F. (1991). "Purification and amino acid sequence of lactocin S, a bacteriocin produced by Lactobacillus sake L45". Applied and environmental microbiology 57 (6): 1829–1834. PMC 183476. PMID 1872611.  edit
  29. ^ Michel-Briand, Y.; Baysse, C. (2002). "The pyocins of Pseudomonas aeruginosa". Biochimie 84 (5–6): 499–510. PMID 12423794.  edit

External links[edit]

External links[edit]

This page is based on a Wikipedia article. The text is available under the Creative Commons Attribution/Share-Alike License.

This tab holds the annotation information that is stored in the Pfam database. As we move to using Wikipedia as our main source of annotation, the contents of this tab will be gradually replaced by the Wikipedia tab.

Bacteriocin (Lactococcin_972) Provide feedback

These sequences represent bacteriocins related to lactococcin. Members tend to be found in association with a seven transmembrane putative immunity protein.

External database links

This tab holds annotation information from the InterPro database.

InterPro entry IPR006540

These sequences represent bacteriocins related to lactococcin 972 [PUBMED:10589723]. Members tend to be found in association with a seven transmembrane putative immunity protein.

Domain organisation

Below is a listing of the unique domain organisations or architectures in which this domain is found. More...

Loading domain graphics...

Alignments

We store a range of different sequence alignments for families. As well as the seed alignment from which the family is built, we provide the full alignment, generated by searching the sequence database using the family HMM. We also generate alignments using four representative proteomes (RP) sets, the NCBI sequence database, and our metagenomics sequence database. More...

View options

We make a range of alignments for each Pfam-A family. You can see a description of each above. You can view these alignments in various ways but please note that some types of alignment are never generated while others may not be available for all families, most commonly because the alignments are too large to handle.

  Seed
(6)
Full
(605)
Representative proteomes NCBI
(146)
Meta
(0)
RP15
(10)
RP35
(15)
RP55
(19)
RP75
(27)
Jalview View  View  View  View  View  View  View   
HTML View  View  View  View  View  View     
PP/heatmap 1 View  View  View  View  View     
Pfam viewer View  View             

1Cannot generate PP/Heatmap alignments for seeds; no PP data available

Key: ✓ available, x not generated, not available.

Format an alignment

  Seed
(6)
Full
(605)
Representative proteomes NCBI
(146)
Meta
(0)
RP15
(10)
RP35
(15)
RP55
(19)
RP75
(27)
Alignment:
Format:
Order:
Sequence:
Gaps:
Download/view:

Download options

We make all of our alignments available in Stockholm format. You can download them here as raw, plain text files or as gzip-compressed files.

  Seed
(6)
Full
(605)
Representative proteomes NCBI
(146)
Meta
(0)
RP15
(10)
RP35
(15)
RP55
(19)
RP75
(27)
Raw Stockholm Download   Download   Download   Download   Download   Download   Download    
Gzipped Download   Download   Download   Download   Download   Download   Download    

You can also download a FASTA format file containing the full-length sequences for all sequences in the full alignment.

External links

MyHits provides a collection of tools to handle multiple sequence alignments. For example, one can refine a seed alignment (sequence addition or removal, re-alignment or manual edition) and then search databases for remote homologs using HMMER3.

Pfam alignments:

HMM logo

HMM logos is one way of visualising profile HMMs. Logos provide a quick overview of the properties of an HMM in a graphical form. You can see a more detailed description of HMM logos and find out how you can interpret them here. More...

Trees

This page displays the phylogenetic tree for this family's seed alignment. We use FastTree to calculate neighbour join trees with a local bootstrap based on 100 resamples (shown next to the tree nodes). FastTree calculates approximately-maximum-likelihood phylogenetic trees from our seed alignment.

Note: You can also download the data file for the tree.

Curation and family details

This section shows the detailed information about the Pfam family. You can see the definitions of many of the terms in this section in the glossary and a fuller explanation of the scoring system that we use in the scores section of the help pages.

Curation View help on the curation process

Seed source: TIGRFAMs
Previous IDs: none
Type: Family
Author: TIGRFAMs, Coggill P
Number in seed: 6
Number in full: 605
Average length of the domain: 60.30 aa
Average identity of full alignment: 44 %
Average coverage of the sequence by the domain: 66.27 %

HMM information View help on HMM parameters

HMM build commands:
build method: hmmbuild -o /dev/null HMM SEED
search method: hmmsearch -Z 23193494 -E 1000 --cpu 4 HMM pfamseq
Model details:
Parameter Sequence Domain
Gathering cut-off 22.0 22.0
Trusted cut-off 22.1 23.1
Noise cut-off 21.4 21.4
Model length: 64
Family (HMM) version: 5
Download: download the raw HMM for this family

Species distribution

Sunburst controls

Show

This visualisation provides a simple graphical representation of the distribution of this family across species. You can find the original interactive tree in the adjacent tab. More...

Loading sunburst data...

Tree controls

Hide

The tree shows the occurrence of this domain across different species. More...

Loading...

Please note: for large trees this can take some time. While the tree is loading, you can safely switch away from this tab but if you browse away from the family page entirely, the tree will not be loaded.